Transferring heat into and out of inert oxide particles in cost-effective, volumetrically efficient heat exchangers remains a principal challenge to implementing particle-based thermal energy storage (TES) in concentrating solar power (CSP) plants with efficient high-temperature supercritical-CO2 (sCO2) Brayton cycles. Engineered alumina-silica particles offer a robust storage media for temperatures well above 700°C. To date, primary particle-sCO2 heat exchangers rely on moving packed beds, which require large surface areas and volumes of expensive Ni-based alloys due to low overall heat transfer coefficients typically less than 300 W m-2 K−1. The limiting thermal resistance at the particle-wall interface can be reduced greatly with bubbling fluidization such that the overall heat transfer coefficients increase above 600 W m−2 K−1. Bubbling fluidized beds of net-downward flowing particles in narrow channels provides an effective method of adopting moving packed bed plate designs while greatly reducing the required surface area and thereby the size and costs of particle-sCO2 heat exchangers. The present work explores experimentally in a 0.25 x 0.10 x 0.018 m narrow-channel fluidized bed the influence of operating conditions on particle-wall heat transfer. Heat transfer measurements with alumina-silica particles (CARBOBEAD CP 40/100 with Sauter mean diameter of 260 µm) demonstrate that low superficial gas velocities as low as 125% of the minimum fluidization velocity greatly enhance particle-wall heat transfer while maintaining bed solid volume fractions above 40%. Particle-wall heat transfer increases with bed temperature due to increases in gas thermal conductivity and increased radiative exchange at higher temperatures. In agreement with past studies, a shallow peak in particle-wall heat transfer occurs at intermediate gas velocities due to the tradeoff of greater particle mixing and reduced solid volume fraction with increasing gas velocities. A new correlation for particle-wall heat transfer coefficients fitted to the test data provides a basis for identifying operating conditions for particle-sCO2 heat exchangers to achieve particle-wall heat transfer coefficients above 1000 W m−2 K−1 and overall heat transfer coefficients above 700 W m−2 K−1 with gas-to-particle mass flow ratios below 2%. The high heat transfer coefficients in narrow-channel fluidized beds can enable smaller, cost-effective particle heat exchangers for full-scale particle-based TES in next-generation CSP plants.

1.
M.
Mehos
,
C.
Turchi
,
J.
Vidal
,
M.
Wagner
,
Z.
Ma
,
C.
Ho
,
W.
Kolb
,
C.
Andraka
, and
A.
Kruizenga
,
Concentrating Solar Power Gen3 Demonstration Roadmap
(
Golden, CO
(
United States
),
2017
).
2.
C.K.
Ho
,
M.
Carlson
,
P.
Garg
, and
P.
Kumar
,
J. Sol. Energy Eng. Trans. ASME
138
,
1
(
2016
).
3.
W.H.
Stein
and
R.
Buck
,
Sol. Energy
152
,
91
(
2017
).
4.
M.A.
Reyes-Belmonte
,
A.
Sebastián
,
J.
González-Aguilar
, and
M.
Romero
,
AIP Conf. Proc.
1850
, (
2017
).
5.
J.M.
Yin
,
Q.Y.
Zheng
,
Z.R.
Peng
, and
X.R.
Zhang
,
Int. J. Energy Res.
44
,
1337
(
2020
).
6.
M.
Mehos
,
J.
Jorgenson
,
P.
Denholm
, and
C.
Turchi
,
Energy Procedia
69
,
2060
(
2015
).
7.
J.
Forrester
,
Energy Procedia
49
,
1632
(
2014
).
8.
C.S.
Turchi
,
J.
Vidal
, and
M.
Bauer
,
Sol. Energy
164
,
38
(
2018
).
9.
T.
Bauer
,
N.
Pfleger
,
N.
Breidenbach
,
M.
Eck
,
D.
Laing
, and
S.
Kaesche
,
Appl. Energy
111
,
1114
(
2013
).
10.
J.C.
Gomez-Vidal
,
J.
Noel
, and
J.
Weber
,
Sol. Energy Mater. Sol. Cells
157
,
517
(
2016
).
11.
P.D.
Myers
and
D.Y.
Goswami
,
Appl. Therm. Eng.
109
,
889
(
2016
).
12.
B.
Liu
,
X.
Wei
,
W.
Wang
,
J.
Lu
, and
J.
Ding
,
Sol. Energy Mater. Sol. Cells
170
,
77
(
2017
).
13.
N.P.
Siegel
,
M.D.
Gross
, and
R.
Coury
,
J. Sol. Energy Eng.
137
,
041003
(
2015
).
14.
M.A.
Reyes-Belmonte
,
E.
Díaz
,
M.
Romero
, and
J.
González-Aguilar
,
AIP Conf. Proc.
2033
, (
2018
).
15.
G.S.
Jackson
,
L.
Imponenti
,
K.J.
Albrecht
,
D.C.
Miller
, and
R.J.
Braun
,
J. Sol. Energy Eng.
141
,
021016
(
2019
).
16.
Z.
Ma
,
G.C.
Glatzmaier
, and
M.
Mehos
,
Energy Procedia
49
,
898
(
2014
).
17.
K.J.
Albrecht
,
M.L.
Bauer
, and
C.K.
Ho
, in
ASME 2019 13th Int. Conf. Energy Sustain.
(
American Society of Mechanical Engineers
,
2019
), pp.
1
11
.
18.
L.
Imponenti
,
K.J.
Albrecht
,
R.J.
Braun
, and
G.S.
Jackson
,
ECS Trans.
72
,
11
(
2016
).
19.
L.
Imponenti
,
K.J.
Albrecht
,
J.W.
Wands
,
M.D.
Sanders
, and
G.S.
Jackson
,
Sol. Energy
151
,
1
(
2017
).
20.
L.
Imponenti
,
K.J.
Albrecht
,
R.
Kharait
,
M.D.
Sanders
, and
G.S.
Jackson
,
Appl. Energy
230
,
1
(
2018
).
21.
K.J.
Albrecht
,
G.S.
Jackson
, and
R.J.
Braun
,
Appl. Energy
165
,
285
(
2016
).
22.
K.J.
Albrecht
,
G.S.
Jackson
, and
R.J.
Braun
,
Sol. Energy
167
,
179
(
2018
).
23.
T.
Deng
,
X.
Li
,
L.
Zhang
,
J.
Lian
,
T.
Ma
, and
Q.
Wang
,
J. Clean. Prod.
122994
(
2020
).
24.
R.
Jacob
,
M.
Liu
,
Y.
Sun
,
M.
Belusko
, and
F.
Bruno
,
J. Energy Storage
24
,
100801
(
2019
).
25.
J.W.
McMurray
,
B.C.
Jolly
,
S.S.
Raiman
,
A.T.
Schumacher
,
K.M.
Cooley
, and
E.
Lara-Curzio
,
Appl. Therm. Eng.
170
,
115003
(
2020
).
26.
M.A.
Bashir
,
A.
Giovannelli
,
K.P.
Amber
,
M.S.
Khan
,
A.
Arshad
, and
A.M.
Daboo
,
J. Energy Storage
30
,
101496
(
2020
).
27.
C.
Ho
,
J.
Christian
,
J.
Kelton
,
D.
Ray
, and
W.
Kolb
,
V001T02A020
(
2014
).
28.
C.K.
Ho
,
J.M.
Christian
,
J.
Yellowhair
,
N.
Siegel
,
S.
Jeter
,
M.
Golob
,
S.I.
Abdel-Khalik
,
C.
Nguyen
, and
H.
Al-Ansary
,
AIP Conf. Proc.
1734
, (
2016
).
29.
C.K.
Ho
,
J.M.
Christian
,
J.
Yellowhair
,
K.
Armijo
,
W.J.
Kolb
,
S.
Jeter
,
M.
Golob
, and
C.
Nguyen
, in Vol.
1
Biofuels, Hydrog. Syngas, Altern. Fuels; CHP Hybrid Power Energy Syst. Conc. Sol. Power; Energy Storage; Environ. Econ. Policy Considerations Adv. Energy Syst. Geothermal, Ocean. Emerg. E
(
American Society of Mechanical Engineers
,
2016
).
30.
C.
Ho
,
J.
Christian
,
D.
Gill
,
A.
Moya
,
S.
Jeter
,
S.
Abdel-Khalik
,
D.
Sadowski
,
N.
Siegel
,
H.
Al-Ansary
,
L.
Amsbeck
,
B.
Gobereit
, and
R.
Buck
,
Energy Procedia
49
,
398
(
2014
).
31.
C.K.
Ho
,
M.
Carlson
,
K.J.
Albrecht
,
Z.
Ma
,
S.
Jeter
, and
C.M.
Nguyen
,
J. Sol. Energy Eng. Trans. ASME
141
,
1
(
2019
).
32.
K.J.
Albrecht
and
C.K.
Ho
, in
AIP Conf. Proc.
(
2018
), p.
040003
.
33.
K.J.
Albrecht
and
C.K.
Ho
,
Sol. Energy
178
,
331
(
2019
).
34.
K.J.
Albrecht
,
M.D.
Carlson
,
H.F.
Laubscher
,
R.
Crandell
,
N.
DeLovato
, and
C.K.
Ho
,
SolarPACES
2019
(
2019
).
35.
T.
Baumann
and
S.
Zunft
,
J. Phys. Conf. Ser.
395
, (
2012
).
36.
T.
Baumann
and
S.
Zunft
,
Energy Procedia
69
,
748
(
2015
).
37.
P.
Bartsch
,
T.
Baumann
, and
S.
Zunft
,
Energy Procedia
99
,
72
(
2016
).
38.
K.J.
Albrecht
and
C.K.
Ho
,
J. Sol. Energy Eng.
141
,
1
(
2019
).
39.
M.F.
Watkins
and
R.D.
Gould
,
J. Heat Transfer
141
,
1
(
2019
).
40.
M.F.
Watkins
,
Y.N.
Chilamkurti
, and
R.D.
Gould
,
J. Heat Transfer
142
,
1
(
2020
).
41.
B.
Sakadjian
,
S.
Hu
,
M.
Maryamchik
,
T.
Flynn
,
K.
Santelmann
, and
Z.
Ma
,
Energy Procedia
69
,
1404
(
2015
).
42.
Z.
Ma
,
G.
Glatzmaier
, and
M.
Mehos
,
J. Sol. Energy Eng. Trans. ASME
136
,
1
(
2014
).
43.
M.A.
Reyes-Belmonte
,
F.
Gómez-García
,
J.
González-Aguilar
,
M.
Romero
,
H.
Benoit
, and
G.
Flamant
,
AIP Conf. Proc.
1850
, (
2017
).
44.
F.
Gomez-Garcia
,
D.
Gauthier
, and
G.
Flamant
,
Appl. Energy
190
,
510
(
2017
).
46.
O.
Molerus
and
W.
Mattmann
,
Chem. Eng. Technol.
15
,
240
(
1992
).
47.
G.
Flamant
and
T.
Menigault
,
30
,
1803
(
1987
).
48.
G.
Flamant
,
Y.
Flitris
, and
D.
Gauthier
,
Chem. Eng. Process.
27
,
175
(
1990
).
49.
D.C.
Miller
,
C.J.
Pfutzner
, and
G.S.
Jackson
,
Int. J. Heat Mass Transf.
126
,
730
(
2018
).
This content is only available via PDF.