We are developing 100-GWh heat-storage systems for use with Concentrated Solar Power (CSP) and nuclear reactor systems. Crushed rock fills a container up to 20 m high and 250 m by 250 m with insulated floor, walls and roof structures. Heat is transferred from the heat source to the crushed rock and then to the power cycle using (1) heat transfer oils for lower-temperature power systems to 400°C or (2) nitrate salts for higher-temperature power systems to 600°C. In charging mode, hot heat transfer fluid is sprayed over crushed rock and drains through the rock to the collection pans at the bottom to be reheated. Sections of rock are heated sequentially. In discharge mode cold heat transfer fluid is sprayed over crushed rock and drains through the rock to the collection pan below to deliver hot fluid to the power cycle. This design minimizes the inventory and thus the cost of heat transfer oil or liquid nitrate salt. The large container size minimizes the surface to volume ratio and thus insulation and structural costs. Crushed rock is the lowest-cost storage material. The goal is to drive storage capital costs down to several dollars per KWh of heat.

1.
C.
Forsberg
and
S.
Braggs-Sitton
, “Maximizing Clean Energy Utilization: Integrating Nuclear and Renewable Technologies to Support Variable Electricity, Heat and Hydrogen Demands”,
The Bridge
,
U.S. National Academy of Engineering
(fall,
2020
).
2.
C.
Forsberg
,
“Chapter 7: Coupling Heat Storage to Base Load Nuclear Reactors,” Nuclear Innovation: Clean Energy Future (NICE Future
),
Flexible Nuclear Energy for Clean Energy Systems, NREL/TP-6A50-77088
(Sept
2020
) https://www.nrel.gov/docs/fy20osti/77088.pdf
3.
C. W.
Forsberg
 et al,
Separating Nuclear Reactors from the Power Block with Heat Storage: A New Power Plant Design Paradigm, Workshop Proceedings
, ANP-TR-189,
Massachusetts Institute of Technology
,
2020
.
4.
C.
Odenthal
 et al, “
Experimental and Numerical Investigation of a 4 MWh High Temperature Molten Salt Thermocline Storage System with Filler
Proc. of the SolarPaces
,
Daegu, South Korea
(1-4, Oct
2019
).
5.
K. F.
Amuda
and
R. M.
Field
, “
Proposed Heat Storage and Recovery Facility Designs for Korean Nuclear Power Plants using Ultra Large Floating Barge
”,
Transactions of the Korean Nuclear Society Autumn Meeting
,
Goyang, Korea
(October 23-25,
2019
).
6.
J.
Kosowatz
, “
Heated Volcanic Rocks Store Energy
,”
Mechanical Engineering
(January
2020
).
7.
M.
Chaanaoui
,
S.
Vaudreuil
and
T.
Bouahmidi
, “
Benchmark of Concentrating Solar Power Plants: historical, current, and future technical and economic development
,”
SEIT 2016, Procedia Computer Science
,
83
(
2016
),
782
789
.
8.
K. F.
Amuda
and
R. M.
Field
, “
Nuclear heat storage and recovery for the APR1400
,”
Journal of Energy Storage
,
28
(
2020
)
101171
, (April
2020
).
9.
H.
Grirate
,
N.
Zari
,
A.
Elmchaouri
,
S.
Molina
,
R.
Couturier
, “
Life Time Analysis of Thermal Oil Used as Heat Transfer Fluid in CSP Power Plant
,”
AIP Conference Proceedings
1734
,
040005
(
2016
), 31 May
2016
.
10.
Therminol 66 Technical Bulletin, Therminol Heat transfer fluids by Eastman company
, https://www.therminol.com/sites/therminol/files/documents/TF-8695_Therminol-66_Technical_Bulletin.pdf
11.
U.
Pelay
,
L.
Luo
,
Y.
Fan
,
D.
Stitou
,
M.
Rood
, “
Technical data for concentrated solar power plants in operation, under construction and in project
,”
Data in Brief
, Volume
13
, August
2017
, Pages
597
599
.
12.
Therminol VP-1 Technical Bulletin, Therminol Heat transfer fluids by Eastman company
, https://www.therminol.com/sites/therminol/files/documents/TF09A_Therminol_VP1.pdf
13.
The Shams 1 Solar Energy Center
,”
Solar Thermal Energy News, PROTERMOSOLAR (2015)
. http://helioscsp.com/the-shams-1-solar-energy-center/
14.
P.
Hezjlar
, “
Traveling Wave Reactor (TWRs
)”,
2020 Encyclopedia of Nuclear Energy
https://www.terrapower.com/
15.
Moltex Energy
, https://www.mergy.com/
16.
V.
Nunes
,
C.
Queirós
,
M.
Lourenço
,
F.
Santos
&
C. Nieto
de Castro
.
Molten salts as engineering fluids – A review: Part I. Molten alkali nitrates
(
2016
).
Applied Energy
,
183
,
603
611
. doi:10.1016
17.
U.S. Department of Energy
,
Office of Energy Efficiency and Renewable Energy (n.d
.).
Concentrating Solar Power Projects.
Retrieved June 30, 2020, from https://solarpaces.nrel.gov/
18.
J. E.
Pacheco
,
S. K.
Showalter
&
W. J.
Kolb
.
Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants
.
Journal of Solar Energy Engineering
,
124
(
2
),
153
159
(
2002
). doi:
19.
D.
Brosseau
,
J. W.
Kelton
,
D.
Ray
,
M.
Edgar
,
K.
Chisman
&
B.
Emms
.
Testing of Thermocline Filler Materials and Molten-Salt Heat Transfer Fluids for Thermal Energy Storage Systems in Parabolic Trough Power Plants
.
Journal of Solar Energy Engineering
,
127
(
1
), (
2005
)
109
116
. doi:
20.
N.
Calvet
,
J. C.
Gomez
,
A.
Faik
,
V. V.
Roddatis
,
A.
Meffre
,
G. C.
Glatzmaier
and
X.
Py
, (
2013
).
Compatibility of a post-industrial ceramic with nitrate molten salts for use as filler material in a thermocline storage system
.
Applied Energy
,
109
,
387
393
. doi:
21.
A.
Bonk
,
C.
Martin
,
M.
Braun
and
T.
Bauer
.
Material investigations on the thermal stability of solar salt and potential filler materials for molten salt storage
.
AIP Conference Proceedings.
(
2017
). doi:
This content is only available via PDF.