A proof of concept sulphuric acid splitting/decomposition prototype driven by hot bauxite particles is designed and developed. The lab-scale test reactor is a novel counter-current flow shell-and-tube heat exchanger with particles on the shell side and sulphuric acid on the tube side with mass flow rates of 10 kg/h and 2 kg/h, respectively. A one-dimensional heat transfer model was developed based on correlations of the flow boiling heat transfer coefficient and particle bed heat transfer coefficient for sizing the shell-and-tube heat exchanger. A detailed study was carried out in order to choose suitable materials especially in the sulphuric acid inlet and evaporation section. A new concept of an electrically heated, continuously operated particle heating system was designed and developed to provide the splitting reactor with hot particles. Different cases were studied using a finite element method (FEM) analysis to qualify the particle heater and examine its thermo-mechanical stability.

1.
R.
Lindsey
, “
Climate Change: Atmospheric Carbon Dioxide
,” 14 August 2020. [0nline]. Available: https://www.clate.gov/news-feat/understanding-climate/cliate-change-atmospheric-carbon-dioxide.
2.
I. E. A. (IEA), “
Germany 2020 Energy Policy Review
,”
International Energy Agency (IEA
),
France
,
2020
.
3.
M.
Roeb
,
N.
Monnerie
,
A.
Houaijia
,
D.
Thomey
and
C.
Sattler
, “Solar Thermal Water Splitting,” in
Renewable Hydrogen Technologies
,
Amsterdam
,
Elsevier
,
2013, pp. 6
3
86
.
4.
N. P.
Siegel
,
J. E.
Miller
,
I.
Ermanoski
,
R. B.
Diver
and
E. B.
Stechel
, “
Factors Affecting the Efficiency of Solar Driven Metal 0xide Thermochemical Cycles
,”
Industrial & Engineering Chemistry Research,
vol.
52
, no.
9
, pp.
3276
3286
,
2013
.
5.
B.
Wong
,
L.
Brown
,
R.
Buckingham
,
W.
Swee
,
B.
Russ
and
M.
Gorensek
, “
Sulfur dioxide disproportionation for sulfur based thermochemical energy storage
,”
Solar energy,
vol.
118
, p.
134
144
,
2015
.
6.
J. H.
Norman
, “
SULFURIC ACID-SULFUR HEAT ST0RAGE CYCLE
”. Patent US Patent No. 4,421,734, 20 December
1983
.
7.
C.
Sattler
,
M.
Roeb
,
C.
Agrafiotis
and
D.
Thomey
, “
Solar hydrogen production via sulphur based thermochemical water-splitting
,”
Solar Energy,
vol.
156
, p.
30
47
,
2017
.
8.
A.
Noglik
,
M.
Roeb
,
C.
Sattler
and
R.
Pitz-Paal
, “
Experimental study on sulfur trioxide decomposition in a volumetric solar receiver-reactor
,”
International Journal of Energy Research,
vol.
33
, no.
9
, pp.
799
812
,
2009
.
9.
D.
Thomey
, L. d. 0liveira,
J.-P.
Sack
,
M.
Roeb
and
C.
Sattler
, “
Development and test of a solar reactor for decomposition of sulphuric acid in thermochemical hydrogen production
,”
International Journal of Hydrogen Energy,
vol.
37
, no.
21
, pp.
16615
16622
,
2012
.
10.
J. L.
Lapp
,
A.
Guerra-Niehoff
,
S.
Hans-Peter
,
D.
Thomey
,
M.
Roeb
and
C.
Sattler
, “
Modeling of a Solar Receiver for Superheating Sulfuric Acid
,”
Journal of Solar Energy Engineering,
vol.
138
, no.
4
, p.
041013
,
2016
.
11.
M.
Ebert
,
L.
Amsbeck
,
J.
Rheinlander
,
B.
Schlogl-Knothe
,
S.
Schmitz
,
M.
Sibum
,
R.
Uhlig
and
R.
Buck
, “
Operational experience of a centrifugal particle receiver prototype
,” in
AIP
,
2019
.
12.
H. R.T.C. and W. A.G., “
Gas turbine topping for increased energy recovery in sulphuric acid manufacture
,”
Applied Energy,
vol.
3
, no.
1
, pp.
23
40
,
1977
.
13.
M.
Lutz
, “
Detailed engineering of a particle heated lab scale reactor for decomposition of sulphuric acid
,” Master Thesis,
Koln
,
2019
.
15.
H.
Martin
,
Transient conduction in stagnant media
, 2 ed.,
Berlin
:
Springer-Verlag
,
2010
.
16.
H. S.
Carslaw
,
Mathematical theory of the conduction of heat in solids
, 2 ed.,
London
:
Macmillan and Co
.,
1921
, pp.
15
25
.
17.
E.
Tsotsas
, “Thermal Conductivity of packed beds,” in
VDI Heat Atlas
, 2 ed.,
Berlin
,
Springer-Verlag
,
2010
, pp.
570
580
.
18.
M. A.
Reichert
, “
Masterarbeit - Konzeptentwicklung und Konstruktion eines Direktkontakt-WarmeUbertragers fUr Keramikpartikel und atmospharische Luft
,”
2014
.
19.
E.
Tsotas
, “Heat Transfer from a Wall to Stagnant and Mechanically Agitated Beds,” in
VDI Heat Atlas
, 2 ed.,
Berlin
,
Springer-Verlag
,
2010
, pp.
1311
1326
.
20.
A.
Noglik
, “
Entwicklung eines solaren Reaktors zur Schwefelsaurespaltung fUr die thermochemische Wasserstofferzeugung
,” Diss.
RWTH Aachen University, 2008
,
Aachen
,
2008
.
21.
K.-W.
Eichenhofer
,
K.
Huder
,
E.
Winkler
and
K. H.
Daum
, “Schwefel und anorganische Schwefelverbindungen,” in
Chemische Technik: Prozesse und Produkte. Band 3: Anorganische Grundstoffe, Zwischenprodukte.
,
Wiley-VCH Verlag GmbH & Co. KGaA
,
2005
.
22.
F. P.
Incropera
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons, Inc
.,
2007
.
23.
V. K.
Thanda
,
Master Thesis - Thermochemical Production of Sulfur as Solar fuel: Design and development of moving bed heat exchanger for sulfuric acid evaporation heated by ceramic particles
”,
Cologne
,
2018
.
24.
D.
Steiner
and
J.
Taborek
, “
Flow Boiling Heat Transfer in Vertical Tubes Correlated by an Asymptotic Model
,”
Heat Transfer Engineering
, vol.
13
, no.
2
, pp.
43
69
,
1992
.
This content is only available via PDF.