Solar energy conversion to chemicals and fuels receives progressively more attention. Many of the possible conversion routes incorporate particles or could be transformed into particle-phase reactions, with one of these promising routes being aerosol reactors directly illuminated with concentrating light. Directly irradiated particles in aerosol phase can combine the advantages of fast heat and mass transfer rates with higher optical efficiencies compared to indirect solar reactors. Therefore, this study utilized mathematical models and qualitative experiments to demonstrate the potential of such reactors and processes using the conversion of aluminum hydroxide particles (Boehmite or gibbsite) to higher Alumina phases. In particular, the numerical simulations showed the prospect of fine tuning a concentrated light driven aerosol (particle) process to achieve higher selectivity of specific products by taking advantage of the very high heat transfer rates and details of the reaction mechanism. This was also verified with complementary experiments of an immobilized bed of particles exposed to short duration concentrated light pulse.

1.
W. C.
Hinds
,
Aerosol technology : properties, behavior, and measurement of airborne particles
., 2nd ed. (
Wiley
,
New York
,
1999
).
2.
D. M.
Fabian
,
S.
Hu
, et al,
Energy and Environmental Science
8
(
10
),
2825
2850
(
2015
).
3.
T. T.
Kodas
and
M. J.
Hampden-Smith
,
Aerosol processing of materials. Toivo T. Kodas and Mark J. Hampden-Smith
. (
New York : Wiley-VCH, [1999]
,
1999
).
4.
H. H.
Funke
,
H.
Diaz
, et al,
Int. J. Hydrogen Energy
33
(
4
),
1127
1134
(
2008
).
5.
J. K.
Dahl
,
K. J.
Buechler
, et al,
Energy
29
(
5–6
),
715
725
(
2004
).
6.
S.
Abanades
,
H.
Kimura
, et al,
Fuel
153
,
56
66
(
2015
).
7.
M.
Welte
,
R.
Barhoumi
, et al,
Industrial & Engineering Chemistry Research
55
(
40
),
10618
10625
(
2016
).
8.
C.
Perkins
,
P. R.
Lichty
, et al,
Int. J. Hydrogen Energy
33
(
2
),
499
510
(
2008
).
9.
R.
Bertocchi
,
J.
Karni
, et al,
Energy
29
(
5-6
),
687
700
(
2004
).
10.
G.
Maag
,
G.
Zanganeh
, et al,
Int. J. Hydrogen Energy
34
(
18
),
7676
7685
(
2009
).
11.
S.
Kraupl
and
A.
Steinfeld
J. Sol.Energy Eng.
125
(
1
),
124
126
(
2003
).
12.
A.
Chinnici
,
M.
Arjomandi
, et al,
Sol. Energy
122
,
58
75
(
2015
).
13.
T. M.
Steeves
and
A. P.
Esser-Kahn
,
RSC Advances
11
(
14
),
8394
8397
(
2021
).
14.
J. R.
Scheffe
,
M.
Welte
, et al,
Industrial & Engineering Chemistry Research
53
(
6
),
2175
2182
(
2014
).
15.
A.
Amiri
,
A. V.
Bekker
, et al,
Chem. Eng. Res. Des.
91
(
3
),
485
496
(
2013
).
16.
R.
Rinaldi
and
U.
Schuchardt
,
J. Catal.
236
(
2
),
335
345
(
2005
).
17.
D.
Haseler
,
A. M.
Ali
, et al,
Sol. Energy
in-press (
2021
).
18.
A.
Boumaza
,
L.
Favaro
, et al,
J. Solid State Chem.
182
(
5
),
1171
1176
(
2009
).
19.
W. E.
Schiesser
,
The numerical method of lines: integration of partial differential equations
. (
Elsevier
,
2012
).
20.
T. L.
Bergman
,
F. P.
Incropera
, et al,
Fundamentals of heat and mass transfer
. (
John Wiley & Sons
,
2011
).
21.
L. F.
Shampine
and
M. W.
Reichelt
,
SIAM journal on scientific computing
18
(
1
),
1
22
(
1997
).
22.
K.
Wefers
and
C.
Misra
,
Oxides and hydroxides of aluminum
. (
Alcoa Laboratories Pittsburgh
,
1987
).
23.
C. W.
Bale
,
E.
Bélisle
, et al,
Calphad: Computer Coupling of Phase Diagrams and Thermochemistry
33
(
2
),
295
311
(
2009
).
24.
J.
Fowler
,
D.
Chandra
, et al,
J. Am. Ceram. Soc.
60
(
3-4
),
155
161
(
1977
).
25.
H.
Wang
,
B.
Xu
, et al,
J. Phys. Chem. Solids
67
(
12
),
2567
2582
(
2006
).
26.
A.
Amiri
,
G. D.
Ingram
, et al,
Adv. Powder Technol.
24
(
4
),
728
736
(
2013
).
27.
W. D.
Wood
,
H. W.
Deem
, et al,
The Emittance of Ceramics and Graphites
. (
Battelle Memorial Institute, Defense Metals Information Center
,
1962
).
28.
A.
Amiri
,
G. D.
Ingram
, et al,
Chem. Eng. Commun.
202
(
9
),
1161
1175
(
2015
).
29.
S.
Vyazovkin
,
A. K.
Burnham
, et al,
Thermochim. Acta
689
,
178597
(
2020
).
30.
G. Krishna
Priya
,
P.
Padmaja
, et al,
J. Mater. Sci. Lett.
16
(
19
),
1584
1587
(
1997
).
This content is only available via PDF.