The National Renewable Energy Laboratory is leading the liquid (molten salt) power tower pathway for the U.S. Department of Energy's concentrating solar power Gen3 initiative. The Gen3 liquid pathway required updated designs to three major components: the tower and receiver, the thermal energy storage tanks, and the power cycle. We assume a 100 MWe net system output and used the System Advisor Model (SAM) to complete a technoeconomic cost analysis of the Gen3 liquid pathway design and estimate its levelized cost of electricity. This paper summarizes the methodology and results of that analysis.
REFERENCES
1.
M.
Mehos
, C.
Turchi
, J.
Vidal
, M.
Wagner
, and Z.
Ma
, “Concentrating Solar Power Gen3 Demonstration Roadmap
,” National Renewable Energy Laboratory, Golden, CO, Technical Report NREL/TP-5500-67464
, 2017
. doi: .2.
J. M.
Freeman
et al., “System Advisor Model (SAM) General Description (Version 2017.9.5
),” NREL/TP- 6A20-70414, May
2018
. doi: .3.
J. M.
Freeman
, N.
DiOrio
, N.
Blair
, D.
Guittet
, P.
Gilman
, and S.
Janzou
, “Improvement and Validation of the System Advisor Model
,” DOE-NREL-30360
, Jan. 2019
. doi: .4.
M.
Mehos
, C.
Turchi
, J.
Jorgenson
, P.
Denholm
, C.
Ho
, and K.
Armijo
, “On the Path to SunShot: Advancing Concentrating Solar Power Technology, Performance, and Dispatchability
,” National Renewable Energy Laboratory, Golden, CO, Technical Report NREL/TP-6A20-65688
, May 2016
. doi: .5.
M.
Sengupta
, Y.
Xie
, A.
Lopez
, A.
Habte
, G.
Maclaurin
, and J.
Shelby
, “The National Solar Radiation Data Base (NSRDB
),” Renewable and Sustainable Energy Reviews
, vol. 89
, pp. 51
–60
, Jun. 2018
, doi: .6.
C. S.
Turchi
and J.
Vidal
, “Molten Salt Power Towers Operating at 600-650 degrees C: Salt Selection and Cost Benefits
,” Solar Energy
, vol. 164
, pp. 38
–46
., 2018
, Accessed: May 01, 2020. [Online]. Available: .7.
D.
Wait
, “Development of 800°C Integrated Flow Channel Receiver: Final Technical Report
,” Solar Reserve, LLC, Final Technical Report DE-EE0007113
, Apr. 2018
.8.
B.
Barua
, M.
McMurtrey
, R. E.
Rupp
, and M. C.
Messner
, “Design Guidance for High Temperature Concentrating Solar Power Components
,” Argonne National Lab. (ANL), Argonne, IL (United States), ANL- 20/03
, Jan. 2020
. doi: .9.
B.
Kelly
, “Advanced Thermal Storage for Central Receivers with Supercritical Coolants
,” Abengoa Solar Inc, DE-FG36-08GO18149
, Jun. 2010
.10.
C. S.
Turchi
, Z.
Ma
, T. W.
Neises
, and M. J.
Wagner
, “Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,” Journal of Solar Energy Engineering
, vol. 135
, no. 4
, p. 041007
, Nov. 2013
, doi: .11.
T.
Neises
and C.
Turchi
, “Supercritical carbon dioxide power cycle design and configuration optimization to minimize levelized cost of energy of molten salt power towers operating at 650 °C
,” Solar Energy
, vol. 181
, pp. 27
–36
, Mar. 2019
, doi: .12.
N. T.
Weiland
, B. W.
Lance
, and S. R.
Pidaparti
, “sCO2 Power Cycle Component Cost Correlations From DOE Data Spanning Multiple Scales and Applications,” in Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
, Phoenix, Arizona, USA
, Jun. 2019
, p. V009T38A008
, doi: .
This content is only available via PDF.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
2022
Author(s)