This paper focuses on a preliminary study based on a two-steps approach to produce complex core/multiple shell architectures, such as “dots-in-rods” (DRs), to be exploited as color down-conversion filters for display manufacturing. Core/shell CdSe/CdS DRs are prepared by using a conventional fast hot injection reaction method to grow CdS layers onto CdSe QDs cores. Then, the CdSe/CdS DRs are engineered by growing an additional CdS shell coated by oleate (OA) molecules, thus producing CdSe/CdS@CdS/OA DRs. This further hybrid shell is synthesized by means of a seeded-growth approach, consisting of the controlled injection of TOP-S and cadmium oleate (Cd(OA)2) as sulfur and cadmium precursors, respectively. As assessed by transmission electron microscopy (TEM) and UV-Vis absorption and photoluminescence (PL) spectroscopies analyses, the feasibility to control the amount of precursors allows to modulate the thickness of the further hybrid shells and therefore the morphological and optical properties of the final heterostructures. The introduction of further shells grafted by specific organic ligand improves the solubility in polymeric matrices. This condition is crucial to produce hybrid nanocomposite films that can be integrated in display manufacturing applications. Moreover, the capability of the final CdSe/CdS@CdS/OA nanostructures to convert blue light in red wavelengths with a remarkable photoluminescence quantum yields (PLQY) makes the produced materials the ideal candidates for a variety of optoelectronic applications, particularly for the fabrication of color down-conversion filters.

1.
B. C.
Krummacher
,
V. E.
Choong
,
M. K.
Mathai
,
S. A.
Choulis
,
F.
So
,
F.
Jermann
,
T.
Fiedler
, and
M.
Zachau
,
Appl. Phys. Lett.
88
,
113506
113508
(
2006
).
2.
S.
Liu
,
X.
Wen
,
W.
Liu
,
W.
Zhang
,
J.
Yu
,
W.
Xie
, and
L.
Zhang
,
Curr. Appl. Phys.
14
,
1451
1454
(
2014
).
3.
M.
Yin
,
T.
Pan
,
Z.
Yu
,
X.
Peng
,
X.
Zhang
,
W.
Xie
,
S.
Liu
, and
L.
Zhang
,
Org. Electron.
62
,
407
411
(
2018
).
4.
A. K.
Srivastava
,
W.
Zhang
,
J.
Schneider
,
J. E.
Halpert
, and
A. L.
Rogach
,
Adv. Sci.
22
,
1901345
(1 of 20) (
2019
).
5.
J.
Li
,
Y.
Liu
,
J.
Hua
,
L.
Tian
, and
J.
Zhao
,
RSC Adv.
6
,
44859
44864
(
2016
).
6.
S. J.
Rosenthal
,
J.
McBride
,
S. J.
Pennycook
, and
L. C.
Feldman
,
Surf. Sci. Rep.
62
,
111
157
(
2007
).
7.
C.
Murray
,
D.
Norris
, and
M.
Bawendi
,
J. Am.
115
,
8706
8715
(
1993
).
8.
Z. A.
Peng
and
X.
Peng
,
J. Am. Chem. Soc.
123
,
183
184
(
2001
).
9.
L.
Qu
,
Z. A.
Peng
, and
X.
Peng
,
Nano Lett.
1
,
333
337
(
2001
).
10.
R. G.
Neuhauser
,
K. T.
Shimizu
,
W. K.
Woo
,
S. A.
Empedocles
, and
M. G.
Bawendi
,
Phys. Rev. Lett.
85
,
3301
3304
(
2000
).
11.
G.
Schlegel
,
J.
Bohnenberger
,
I.
Potapova
, and
A.
Mews
,
Phys. Rev. Lett.
88
,
137401
137404
(
2002
).
12.
B.
Mahler
,
P.
Spinicelli
,
S.
Buil
,
X.
Quelin
,
J. P.
Hermier
, and
B.
Dubertret
,
Nat. Mater.
7
,
659
664
(
2008
).
13.
J.
Hu
,
L. S.
Li
,
W.
Yang
,
L.
Manna
,
L. W.
Wang
, and
A. P.
Alivisatos
,
Science
292
,
2060
2063
(
2001
).
14.
L.
Carbone
,
C.
Nobile
,
M.
De Giorgi
,
F. Della
Sala
,
G.
Morello
,
P.
Pompa
,
M.
Hytch
,
E.
Snoeck
,
A.
Fiore
,
I. R.
Franchini
,
M.
Nadasan
,
A. F.
Silvestre
,
L.
Chiodo
,
S.
Kudera
,
R.
Cingolani
,
R.
Krahne
, and
L.
Manna
,
Nano Lett.
7
,
2942
2950
(
2007
).
15.
F.
Pisanello
,
L.
Martiradonna
,
P.
Spinicelli
,
A.
Fiore
,
J. P.
Hermier
,
L.
Manna
,
R.
Cingolani
,
E.
Giacobino
,
M.
De Vittorio
, and
A.
Bramati
,
Superlattices Microstruct.
47
,
165
169
(
2010
).
16.
I.
Coropceanu
,
A.
Rossinelli
,
J. R.
Caram
,
F. S.
Freyria
, and
M. G.
Bawendi
,
ACS Nano
10
,
3295
3301
(
2016
).
17.
T.
Ihara
,
R.
Sato
,
T.
Teranishi
, and
Y.
Kanemitsu
,
Phys. Rev. B - Condens. Matter Mater. Phys.
90
,
035309
(1 of 5) (
2014
).
18.
M.
Allione
,
A.
Ballester
,
H.
Li
,
A.
Comin
,
J. L.
Movilla
,
J. I.
Climente
,
L.
Manna
, and
I.
Moreels
,
ACS Nano
7
,
2443
2452
(
2013
).
19.
S.
Deka
,
A.
Falqui
,
G.
Bertoni
,
C.
Sangregorio
,
G.
Poneti
,
G.
Morello
,
M.
De Giorgi
,
C.
Giannini
,
R.
Cingolani
,
L.
Manna
, and
P. D.
Cozzoli
,
J. Am. Chem. Soc.
131
,
817
812
(
2009
).
20.
B. N.
Pal
,
Y.
Ghosh
,
S.
Brovelli
,
R.
Laocharoensuk
,
V. I.
Klimov
,
J. A.
Hollingsworth
, and
H.
Htoon
,
Nano Lett.
12
,
331
336
(
2012
).
21.
Z.
Li
,
F.
Chen
,
L.
Wang
,
H.
Shen
,
L.
Guo
,
Y.
Kuang
,
H.
Wang
,
N.
Li
, and
L. S.
Li
,
Chem. Mater.
30
,
3668
3676
(
2018
).
22.
Y.
Zhang
,
F.
Zhang
,
H.
Wang
,
L.
Wang
,
F.
Wang
,
Q.
Lin
,
H.
Shen
, and
L. S.
Li
,
Opt. Express
27
,
7935
7944
(
2019
).
23.
N.
Kirkwood
,
J. O. V.
Monchen
,
R. W.
Crisp
,
G.
Grimaldi
,
H. A. C.
Bergstein
,
I.
Du Fossé
,
W.
Van Der Stam
,
I.
Infante
, and
A. J.
Houtepen
,
J. Am. Chem. Soc.
140
(
46
),
15712
15723
. (
2018
).
24.
F.
Limosani
,
R.
Carcione
, and
F.
Antolini
,
J. Vac. Sci. Technol. B Nanotechnol. Microelectron.
38
,
012802
(1 of 9) (
2020
).
25.
Zhang
,
Y.
,
Zhang
,
F.
,
Wang
,
H.
,
Wang
,
L.
,
Wang
,
F.
,
Lin
,
Q.
,
Shen
,
H.
, &
Li
,
L. S.
,
Optics express
27
(
6
),
7935
7944
(
2019
).
26.
L.
Carbone
and
P. D.
Cozzoli
,
Nano Today
5
,
449
493
(
2010
).
27.
W. W.
Yu
,
L.
Qu
,
W.
Guo
, and
X.
Peng
,
Chem. Mater.
15
,
2854
2860
(
2003
).
28.
J.
Dimitrijevic
,
L.
Krapf
,
C.
Wolter
,
C.
Schmidtke
,
J. P.
Merkl
,
T.
Jochum
,
A.
Kornowski
,
A.
Schüth
,
A.
Gebert
,
G.
Hüttmann
,
T.
Vossmeyer
, and
H.
Weller
,
Nanoscale
6
,
10413
10422
(
2014
).
29.
A. I.
Ekimov
,
I. A.
Kudryavtsev
,
A. L.
Efros
,
T. V.
Yazeva
,
F.
Hache
,
M. C.
Schanne-Klein
,
A. V.
Rodina
,
D.
Ricard
, and
C.
Flytzanis
,
J. Opt. Soc. Am. B
10
,
100
107
(
1993
).
30.
M. G.
Lupo
,
F. D.
Sala
,
L.
Carbone
,
M.
Zavelani-Rossi
,
A.
Fiore
,
L.
Lüer
,
D.
Polli
,
R.
Cingolani
,
L.
Manna
, and
G.
Lanzani
,
Nano Lett.
8
,
4582
4587
(
2008
).
This content is only available via PDF.