We have realized a 3D substrate for surface-enhanced Raman scattering (SERS) sensor with DELIL (Double Exposure Laser Interference Lithography) technique and silver nanoparticles (Ag-NPs) functionalized with an appropriate aptamer. The 3D substrates were obtained by means of soft mold technique in thin layer of sol-gel Ti/TMSPM on silicon substrate using intermediate stamp fabricated in a photosensitive material. The stamp was in turn produced with a Lloyd's mirror set up by means of double exposition (Ar+ laser at 364 nm, 23 mW) of a photopolymerizable thin film at two mutually orthogonal orientation.The obtained 3D gratings have regular cross-weave texture with holes and pillars. The Ag-NPs were deposited by drop-casting on the 3D substrates and they arranged themselves inside the holes. This controlled Ag-NPs distribution allows the system to be a potential candidate for a good SERS sensor. The easy replication of the 3D substrates from a single stamp makes this technique attractive for applications in analytic and environmental fields.

1.
M.
Fleischmann
,
P.
Hendra
, and
A.
McQuillan
, “
Raman spectra of pyridine adsorbed at a silver electrode
,”
Chem. Phys. Lett.
26
,
163
166
(
1974
).
2.
S.
Schlücker
,
Surface-Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications
(
John Wiley and Sons
,
Ltd, Weinheim, Germany
,
2010
).
3.
K. N.
Heck
,
B. G.
Janesko
,
G. E.
Scuseria
,
N. J.
Halas
, and
M. S.
Wong
, “
Observing metal-catalyzed chemical reactions in situ using surface-enhanced raman spectroscopy on pd-au nanoshells
,”
Journal of the American Chemical Society
130
,
16592
16600
(
2008
), pMID: 19012400, .
4.
W.
Xie
,
C.
Herrmann
,
K.
Kömpe
,
M.
Haase
, and
S.
Schlücker
, “
Synthesis of bifunctional au/pt/au core/shell nanoraspberries for in situ sers monitoring of platinum-catalyzed reactions
,”
Journal of the American Chemical Society
130
,
19302
19305
(
2011
).
5.
V.
Joseph
,
C.
Engelbrekt
,
J. D.
Zhang
,
U.
Gernert
,
J.
Ulstrup
, and
J.
Kneipp
, “
Characterizing the kinetics of nanoparticle-catalyzed reactions by surface-enhanced raman scattering
,”
Angewandte Chemie, International Edition
51
,
7592
7596
(
2012
).
6.
N.
Leopold
,
M.
Haberkorn
,
T.
Laurell
,
J.
Nilsson
,
J. R.
Baena
,
J.
Frank
, and
B.
Lendl
, “
On-line monitoring of airborne chemistry in levitated nanodroplets: in situ synthesis and application of sers-active ag-sols for trace analysis by ft-raman spectroscopy
,”
Analytical Chemistry
75
,
2166
2171
(
2003
).
7.
E. A.
Carrasco
,
M.
Campos-Vallette
,
P.
Leyton
,
G.
Diaz
,
R. E.
Clavijo
,
J. V.
García-Ramos
,
N.
Inostroza
,
C.
Domingo
,
S.
Sanchez-Cortes
, and
R.
Koch
, “
Study of the interaction of pollutant nitro polycyclic aromatic hydrocarbons with different metallic surfaces by surface-enhanced vibrational spectroscopy (sers and seir
),”
The Journal of Physical Chemistry A
107
,
9611
9619
(
2003
), .
8.
S.
Sebastian
, “
Sers microscopy: Nanoparticle probes and biomedical applications
,”
ChemPhysChem
10
,
1344
1354
(
2009
), https://chemistry-europe.onlinelibrary.wiley.com/doi/pdf/10.1002/cphc.200900119.
9.
J.
Kneipp
,
H.
Kneipp
, and
K.
Kneipp
, “
Sers—a single-molecule and nanoscale tool for bioanalytics
,”
Chem. Soc. Rev.
37
,
1052
1060
(
2008
).
10.
B.
Panchapakesan
,
B.
Book-Newell
,
P.
Sethu
,
M.
Rao
, and
J.
Irudayaraj
, “
Gold nanoprobes for theranostics
,”
Nanomedicine
6
,
1787
1811
(
2011
).
11.
E.
Boisselier
and
D.
Astruc
, “
Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity
,”
Chem. Soc. Rev.
38
,
1759
1782
(
2009
).
12.
M.
Prochazka
, “Medical applications of sers,” in
Surface-Enhanced Raman Spectroscopy: Bioanalytical, Biomolecular and Medical Applications
(
Springer International Publishing
,
Cham
,
2016
) pp.
149
211
.
13.
Y.
Kitahama
,
T.
Itoh
,
P.
Pienpinijtham
,
S.
Ekgasit
,
X.
Han
, and
Y.
Ozaki
, “
Biological applications of sers using functional nanoparticles
,”
ACS Symposium Series
1113
,
181
234
(
2012
).
14.
T. T.
Ong
,
E. W.
Blanch
, and
O. A.
Jones
, “
Surface enhanced raman spectroscopy in environmental analysis, monitoring and assessment
,”
Science of The Total Environment
720
,
137601
(
2020
).
15.
M.
Jaishankar
,
T.
Tseten
,
N.
Anbalagan
,
B. B.
Mathew
, and
K. N.
Beeregowda
, “
Toxicity, mechanism and health effects of some heavy metals
,”
Interdiscip. Toxicol.
7
,
60
72
(
2014
).
16.
P.
Prosposito
,
F.
Mochi
,
E.
Ciotta
,
M.
Casalboni
,
F.
De Matteis
,
I.
Venditti
, …, and
I.
Fratoddi
, “
Hydrophilic silver nanoparticles with tunable optical properties: application for the detection of heavy metals in water
,”
Beilstein journal of nanotechnology
7
,
1654
(
2016
).
17.
F.
Mochi
,
L.
Burratti
,
I.
Fratoddi
,
I.
Venditti
,
C.
Battocchio
,
L.
Carlini
,
G.
Iucci
,
M.
Casalboni
,
F.
De Matteis
,
S.
Casciardi
,
S.
Nappini
,
I.
Pis
, and
P.
Prosposito
, “
Plasmonic sensor based on interaction between silver nanoparticles and ni2+ or co2+ in water
,”
Nanomaterials
8
,
488
(
2018
).
18.
F.
Chai
,
C.
Wang
,
T.
Wang
,
L.
Li
, and
Z.
Su
, “
Colorimetric detection of pb2+ using glutathione functionalized gold nanoparticles
,”
ACS Appl. Mater. Interfaces
2
,
1466
1470
(
2010
).
19.
P.
Prosposito
,
L.
Burratti
, and
I.
Venditti
, “
Silver nanoparticles as colorimetric sensors for water pullutants
,”
Chemosensors
8
,
2
(
2020
).
20.
L.
Burratti
,
M.
Casalboni
,
F.
De Matteis
,
F.
Mochi
,
R.
Francini
,
S.
Casciardi
,
E.
Bolli
, and
P.
Prosposito
, “
Synthesis of fluorescent silver nanoclusters for environmental sensing applications
,”
IET Conference Publications; Institution of Engineering and Technology
2018
,
52
56
(
2018
).
21.
L.
Burratti
,
E.
Ciotta
,
E.
Bolli
,
S.
Kaciulis
,
M.
Casalboni
,
F.
De Matteis
,
A.
GarznManjn
,
R.
Pizzoferrato
, and
P.
Prosposito
, “
Fluorescence en-hancement induced by the interaction of silver nanocluster with lead ions in water
,”
Colloids and Surfaces A: Physicochemical and Engineering Aspects
579
,
123634
(
2019
).
22.
B.
Deependra
,
K.
Swadesh
,
K.
Pratihar
, and
S.
Paul
., “
Controlled modification of starch in the synthesis of gold nanoparticles with tunable optical properties and their application in heavy metal sensing
,”
RSC Advances
5
.
99
,
81554
81564
(
2015
).
23.
J.
Slocik
,
J.
Zabinski
,
D. M.
Phillips
, and
R.
Naik
, “
Colorimetric response of peptide-functionalized gold nanoparticles to metal ions
,”
Small
4
,
548
551
(
2008
).
24.
J.
Liu
and
Y.
Lu
, “
Accelerated color change of gold nanoparticles assembled by dnazymes for simple and fast colorimetric pb2+ detection
,”
J. Am. Chem. Soc.
126
,
12298
12305
(
2004
).
25.
C.
Yu
and
W.
Tseng
, “
Colorimetric detection of mercury (ii) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate
,”
Langmuir
24
,
12717
12722
(
2008
).
26.
A.
Wang
and
X.
Kong
, “
Review of recent progress of plasmonic materials and nano-structures for surface-enhanced raman scattering
,”
Materials
8
,
3024
3052
(
2015
).
27.
B.
Sharma
,
R.
Frontiera
,
A.
Henry
,
E.
Ringe
, and
R. V.
Duyne
, “
Sers: materials, applications, and the future
,”
Mater.Today
15
,
16
25
(
2012
).
28.
S.
Yang
,
X.
Dai
,
B.
Stogin
, and
T.
Wong
, “
Ultra-sensitive surface-enhanced raman scattering detection in common fluids
,”
Proc. Natl. Acad. Sci. USA
113
,
268
273
(
2016
).
29.
O.
Péron
,
E.
Rinnert
,
M.
Lehaitre
,
P.
Crassous
, and
C.
Compère
, “
Detection of polycyclic aromatic hydrocarbon (pah) compounds in artificial sea-water using surface-enhanced raman scattering (sers
),”
Talanta
9
,
199
204
(
2009
).
30.
D.
Rajesh
, M. M., and
C.
Sunandana
, “
Effect of etching on the optical, morphological properties of ag thin films for sers active substrates
,”
J. Chem.
5
(
2013
).
31.
M.-B. P. A.
, “
Review of sers substrates for chemical sensing
,”
Nanomaterials (Basel)
7
,
142
(
2017
).
32.
D.
Wu
,
J.
Li
,
B.
Ren
, and
Z.
Tian
, “
Electrochemical surface-enhanced raman spectroscopy of nanostructures
,”
Chem. Soc. Rev.
37
,
1025
1041
(
2008
).
33.
M.
Fan
,
G.
Andrade
, and
A.
Brolo
, “
A review on the fabrication of substrates for surface enhanced raman spectroscopy and their applications in analytical chemistry
,”
Anal. Chim. Acta
693
,
7
25
(
2011
).
34.
P.
Prosposito
,
M.
Casalboni
,
E.
Orsini
,
C.
Palazzesi
, and
F.
Stella
, “
Uv-nanoimprinting lithography of bragg gratings on hybrid sol-gel based channel waveguides
,”
Solid State Sciences
11
,
1886
1889
(
2010
).
35.
L. Dt
Amico
,
D.
Colonna
,
R.
De Angelis
,
M.
Casalboni
,
A.
Di Carlo
, and
P.
Prosposito
, “
Bragg grating nanostructuring of the tio2 layer in dye sensitized solar cells: An efficient method to enhance light harvesting
,”
RSC Advances
4
,
4382
43833
(
2014
).
36.
D.
Mampallil
and
H. B.
Eralb
, “
A review on suppression and utilization of the coffee-ring effect
,”
Advances in Colloid and Interface Science
252
,
38
54
(
2018
).
37.
D.
Bersani
,
P. P.
Lottici
,
L.
Tosini
, and
A.
Montenero
, “
Raman study of the polymerization processes in trimethoxysilylpropyl methacrylate (tmspm
),”
J. Raman Spectrosc.
30
,
1043
1047
(
1999
).
38.
J.
Hao
,
M.
Han
,
S.
Han
,
X.
Meng
,
T.
Su
, and
Q.
Wang
, “
Sers detection of arsenic in water: A review
,”
Journal of environmental sciences
36
,
152
162
(
2015
).
39.
H.
Lux
and
P.
Siemroth
and
A.
Sgarlata
and
P.
Prosposito
and
M.
Andreas
and
M.
Casalboni
and
S.
Schrader
, “
Synthesis of graphene-like transparent conductive films on dielectric substrates using a modified filtered vacuum arc system
,”
J. Appl. Phys.
117
,
195304
(
2015
).
40.
V.
Petkov
,
A.
Timmons
,
J.
Camardese
, and
Y.
Ren
, “
Li insertion in ball-milled graphitic carbon studied by total x-ray diffraction
,”
J. Phys.: Condens. Matter
23
,
435003
(
2011
).
41.
J.
Hong
,
M. K.
Park
,
E. J.
Lee
,
D. E.
Lee
,
D. S.
Hwang
, and
S.
Ryu
, “
Origin of new broad raman d and g peaks in annealed graphene
,”
Sci Rep
3
,
2700
(
2013
).
This content is only available via PDF.