For current and future large scale tokamaks, neutral beams for heating and current drive are generated from the neutralisation of large negative ion beams with energies up to 1 MeV and current of up to 40 A. To improve efficiency and prevent high heat loads on beamline components, permanent magnets are used to deflect co-extracted electrons out of the beam at a low energy. This field also affects the negative ions as they are accelerated, causing beamlets to exit the grid system with a residual offset and deflection angle. This adversely affects the overall divergence of the beam, and compensation is foreseen in future devices. Measurements of the residual deflection of a single beamlet have been carried out at the BATMAN Upgrade test facility by calculating relative beamlet angles from beam emission spectroscopy (BES) spectra, and through the use of one-dimensional carbon fibre composite (1D-CFC) tile calorimetry to find beamlet positions. It is described how these measurements can be made, and that they are limited to relative measurements only, for a single beamlet and for a single line of sight. The amount of beamlet deflection is shown to change significantly, by up to 0.6°(10 mrad), depending on the operational parameters used. As is to be expected the beamlet deflection angle is observed to be affected by changes to the voltages of the acceleration system. However, the beamlet deflection angle is also observed to change with RF power and other source parameters, which, to a first approximation, should only affect beamlet divergence, and not the deflection. These changes to beamlet deflection through parameters other than the grid voltages used may have consequences for systems planning to use suppression systems for the zig-zag deflection. The effectiveness of the suppression system may be reduced due to changes in the source parameters, which could lead to beam losses and high heat loads on downstream components.

1.
ITER
, “
Neutral beam heating and current drive system
,”
(
2011
), Design Description Document (DDD) 5.3.
2.
R.
Hemsworth
,
H.
Decamps
,
J.
Graceffa
,
B.
Schunke
,
M.
Tanaka
,
M.
Dremel
,
A.
Tanga
,
H. P. L.
de Esch
,
F.
Geli
,
J.
Milnes
,
T.
Inoue
,
D.
Marcuzzi
,
P.
Sonato
, and
P.
Zaccaria
, “
Status of the ITER heating neutral beam system
,”
Nuclear Fusion
49
,
045006
(
2009
).
3.
R. S.
Hemsworth
,
D.
Boilson
,
P.
Blatchford
,
M. Dalla
Palma
,
G.
Chitarin
,
H. P. L.
de Esch
,
F.
Geli
,
M.
Dremel
,
J.
Graceffa
, and
D.
Marcuzzi
, “
Overview of the design of the ITER heating neutral beam injectors
,”
New Journal of Physics
19
,
025005
(
2017
).
4.
M.
Kashiwagi
,
M.
Taniguchi
,
N.
Umeda
,
M.
Dairaku
,
H.
Tobari
,
H.
Yamanaka
,
K.
Watanabe
,
T.
Inoue
,
H. P. L.
de Esch
,
L. R.
Grisham
,
D.
Boilson
,
R. S.
Hemsworth
, and
M.
Tanaka
, “
Compensations of beamlet deflections for 1 MeV accelerator of ITER NBI
,”
AIP Conference Proceedings
1515
,
227
(
2013
).
5.
G.
Chitarin
,
A.
Kojima
,
D.
Aprile
,
P.
Agostinetti
,
M.
Barbisan
,
S.
Denizeau
,
M.
Ichikawa
,
J.
Hiratsuka
,
M.
Kashiwagi
,
N.
Marconato
,
A.
Pimazzoni
,
E.
Sartori
,
G.
Serianni
,
P.
Veltri
, and
M.
Yoshida
, “
Improving a negative ion accelerator for next generation of neutral beam injectors: Results of QST-consorzio RFX collaborative experiments
,”
Fusion Engineering and Design
146
,
792
795
(
2019
).
6.
G.
Chitarin
,
P.
Agostinetti
,
D.
Aprile
,
N.
Marconato
, and
P.
Veltri
, “
Cancellation of the ion deflection due to electron-suppression magnetic field in a negative-ion accelerator
,”
Review of Scientific Instruments
85
,
02B317
(
2014
).
7.
M.
Cavenago
and
P.
Veltri
, “
Deflection compensation for multiaperture negative ion beam extraction: analytical and numerical investigations
,”
Plasma Sources Science and Technology
23
,
065024
(
2014
).
8.
H.
de Esch
,
M.
Kashiwagi
,
M.
Taniguchi
,
T.
Inoue
,
G.
Serianni
,
P.
Agostinetti
,
G.
Chitarin
,
N.
Marconato
,
E.
Sartori
,
P.
Sonato
,
P.
Veltri
,
N.
Pilan
,
D.
Aprile
,
N.
Fonnesu
,
V.
Antoni
,
M.
Singh
,
R.
Hemsworth
, and
M.
Cavenago
, “
Physics design of the HNB accelerator for ITER
,”
Nuclear Fusion
55
,
096001
(
2015
).
9.
B.
Heinemann
,
M.
Fröschle
,
H. D.
Falter
,
U.
Fantz
,
P.
Franzen
,
W.
Kraus
,
R.
Nocentini
,
R.
Riedl
, and
B.
Ruf
, “
Upgrade of the BATMAN test facility for H- source development
,”
AIP Conference Proceedings
1655
,
060003
(
2015
).
10.
U.
Fantz
,
F.
Bonomo
,
M.
Fröschle
,
B.
Heinemann
,
A.
Hurlbatt
,
W.
Kraus
,
L.
Schiesko
,
R.
Nocentini
,
R.
Riedl
, and
C.
Wimmer
, “
Advanced NBI beam characterization capabilities at the recently improved test facility BATMAN Upgrade
,”
Fusion Engineering and Design
146
,
212
215
(
2019
).
11.
P.
Franzen
and
U.
Fantz
, “
Beam homogeneity dependence on the magnetic filter field at the IPP test facility MANITU
,”
AIP Conference Proceedings
1390
,
310
321
(
2011
).
12.
B.
Heinemann
,
U.
Fantz
,
W.
Kraus
,
L.
Schiesko
,
C.
Wimmer
,
D.
Wünderlich
,
F.
Bonomo
,
M.
Fröschle
,
R.
Nocentini
, and
R.
Riedl
, “
Towards large and powerful radio frequency driven negative ion sources for fusion
,”
New Journal of Physics
19
,
015001
(
2017
).
13.
M.
Barbisan
,
F.
Bonomo
,
U.
Fantz
, and
D.
Wünderlich
, “
Beam characterization by means of emission spectroscopy in the ELISE test facility
,”
Plasma Physics and Controlled Fusion
59
,
055017
(
2017
).
14.
B.
Zaniol
, “
Error evaluation in the spectroscopic measurement of high power beam angular divergence
,”
Journal of Quantitative Spectroscopy and Radiative Transfer
112
,
513
518
(
2011
).
15.
A.
Hurlbatt
,
N.
den Harder
,
U.
Fantz
, and
the NNBI Team
, “
Improved understanding of beamlet deflection in ITER-relevant negative ion beams through forward modelling of beam emission spectroscopy
,”
Fusion Engineering and Design
153
,
111486
(
2020
).
16.
S.
Mochalskyy
,
D.
Wünderlich
,
B.
Ruf
,
U.
Fantz
,
P.
Franzen
, and
T.
Minea
, “
On the meniscus formation and the negative hydrogen ion extraction from ITER neutral beam injection relevant ion source
,”
Plasma Physics and Controlled Fusion
56
,
105001
(
2014
).
17.
A.
Hurlbatt
,
N.
den Harder
,
D.
Wünderlich
,
U.
Fantz
, and
the NNBI Team
, “
The particle tracking code BBCNI for large negative ion beams and their diagnostics
,”
Plasma Physics and Controlled Fusion
61
,
105012
(
2019
).
This content is only available via PDF.