We adopt methods of symplectic tomography and discrete phase space for the description of states of discrete variable quantum systems (qudits). The proposed tomographic functions are constructed as generalized analogs of the center-of-mass and the cluster tomograms and associated with finite linear manifolds in the discrete phase space. Hilbert spaces of considered qudits must have the power of a prime dimension, so the corresponding phase spaces are the vector spaces over finite fields. We find conditions for the nonnegativity of the constructed functions and obtain formulae for the density matrix restoration.

1.
Neumann
,
J.
von
:
Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik
.
Gött. Nach.
1927
,
245
272
(
1927
).
2.
Husimi
,
K.
:
Some Formal Properties of the Density Matrix
.
Proc. Phys. Math. Soc. Jpn.
22
,
264
314
(
1940
)
3.
Sudarshan
,
E.C.G.
:
Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams
.
Phys. Rev. Lett.
10
,
277
279
(
1963
)
4.
Glauber
,
R.J.
:
Coherent and Incoherent States of the Radiation Field
.
Phys. Rev.
131
,
2766
2788
(
1963
)
5.
Kano
,
Y.
:
A New Phase-Space Distribution Function in the Statistical Theory of the Electromagnetic Field
.
J. Math. Phys.
6
,
1913
1915
(
1965
)
6.
Mancini
,
S.
,
Man’ko
,
V.I.
,
Tombesi
,
P.
:
Symplectic tomography as classical approach to quantum systems
.
Physics Letters A
213
,
1
6
(
1996
).
7.
Wigner
,
E.
:
On the Quantum Correction For Thermodynamic Equilibrium
.
Phys. Rev.
40
,
749
759
(
1932
).
8.
Radon
,
J.
:
Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten
.
Akad. Wiss.
69
,
262
277
(
1917
).
9.
Vogel
,
K.
,
Risken
,
H.
:
Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase
.
Phys. Rev. A
40
,
2847
2849
(
1989
).
10.
Bertrand
,
J.
,
Bertrand
,
P.
:
A tomographic approach to Wigner’s function
.
Found Phys
17
,
397
405
(
1987
).
11.
Arkhipov
,
A.S.
,
Lozovik
,
Yu.E.
,
Man’ko
,
V.I.
:
Tomography for Several Particles with One Random Variable
.
Journal of Russian Laser Research
24
,
237
255
(
2003
).
12.
Arkhipov
,
A.S.
,
Man’ko
,
V.I.
:
Quantum transitions in the center-of-mass tomographic probability representation
.
Phys. Rev. A
71
,
012101
(
2005
).
13.
Dudinets
,
I.
,
Man’ko
,
V.
:
Center of mass tomography and Wigner function for multimode photon states
.
Int J Theor Phys
57
,
1631
1644
(
2018
).
14.
Wootters
,
W.K.
:
A Wigner-function formulation of finite-state quantum mechanics
.
Ann. of Phys.
176
,
1
21
(
1987
).
15.
Gibbons
,
K.S.
,
Hoffman
,
M.J.
,
Wootters
,
W.K.
:
Discrete phase space based on finite fields
.
Phys. Rev. A
70
,
062101
(
2004
).
16.
Ali
,
S.T.
,
Atakishiyev
,
N.M.
,
Chumakov
,
S.M.
,
Wolf
,
K.B.
:
The wigner function for general lie groups and the wavelet transform
.
Ann. Henri Poincare
1
,
685
714
(
2000
).
17.
Avanesov
,
A. S.
,
Man’ko
,
V. I.
:
The Discrete Center-of-Mass Tomogram
.
Int J Theor Phys.
59
,
2404
2424
(
2020
).
This content is only available via PDF.