We consider a situation, when a part of a pure entangled state is measured, which generates the ensemble of quantum states for the other part. We consider the connection between the uncertainty property of the observable and coherence of the dual ensemble for any entanglement measure.

1.
D.A.
Kronberg
,
“Coherence of Quantum Ensemble as a Dual to Uncertainty for a Single Observable
,”
L. J. Math.
40
,
10
,
1507
1515
(
2019
).
2.
V.
Vedral
, “
The role of relative entropy in quantum information theory
,”
Rev. Mod. Phys.
74
,
197
(
2002
).
3.
T.
Baumgratz
,
M.
Cramer
, and
M. B.
Plenio
, “
Quantifying coherence
,”
Phys. Rev. Lett.
113
,
140401
(
2014
).
4.
Y.
Yao
,
X.
Xiao
,
L.
Ge
, and
C. P.
Sun
, “
Quantum coherence in multipartite, systems
,”
Phys. Rev. A
92
,
022112
(
2015
).
5.
M.
Krishna
and
K. R.
Parthasarathy
, “
An entropic uncertainty principle for quantum measurements
,”
Indian J. Stat., Ser. A
64
,
842
851
(
2002
).
6.
M. J. W.
Hall
, “
Quantum information and correlation bounds
,”
Phys. Rev. A
55
,
100
(
1997
).
7.
M.
Dall’Arno
,
G. M.
D’Ariano
, and
M. F.
Sacchi
, “
Informational power of quantum measurements
,”
Phys. Rev. A
83
,
062304
(
2011
).
8.
A. S.
Holevo
, “
Information capacity of a quantum observable
,”
Probl. Inform. Transmiss.
48
(
1
) (
2012
).
9.
Zhengjun
Xi
,
Yongming
Li
,
Heng
Fan
,
“Quantum coherence and correlations in quantum system
,”
Sc. Rep.
,
10922
(
2015
).
10.
J.
von Neumann
,
Mathematical Foundations of Quantum Mechanics
(
Princeton University Press, Princeton
,
1955
), translation from the German 1932 edition by
R. T.
Beyer
.
This content is only available via PDF.