Spectrally selective solar cells (SSSC) can be used to combine photovoltaics and photosynthesis. In contrast to agrivoltaic systems where opaque modules are installed with enough space in between to realize only partial shading. SSSCs can be used to cover an entire area of farm land, greenhouses or photo-bioreactors. This concept takes advantage of the chlorophyll a absorption spectrum, which exhibits its maxima at around 460 and 680 nm. A SSSC can be used to generate electricity by absorbing the remaining green and infrared light. In this publication we present the spectral sharing of sun light using nano-absorber based spectrally selective solar cells in combination with microalgae (Acutodesmus obliquus) biomass production. These SSSCs were installed in a lab cultivation unit to evaluate the influence of the spectral selective illumination on the algae growth rate. Different photon fluxes and the influence of blue light on the biomass production were tested.

1.
Weselek
,
A.
,
Ehmann
,
A.
,
Zikeli
,
S.
,
Lewandowski
,
I.
,
Schindele
,
S.
, and
Högy
,
P.
: ‘
Agrophotovoltaic systems: applications, challenges, and opportunities. A review
’,
Agronomy for Sustainable Development
,
2019
,
39
, (
4
), pp.
35
2.
Dupraz
,
C.
,
Marrou
,
H.
,
Talbot
,
G.
,
Dufour
,
L.
,
Nogier
,
A.
, and
Ferard
,
Y.
: ‘
Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes
’,
Renewable Energy
,
2011
,
36
, (
10
), pp.
2725
2732
3.
Goetzberger
,
A.
, and
Zastrow
,
A.
: ‘
On the coexistence of solar-energy conversion and plant cultivation
’,
International Journal of Solar Energy
,
1982
,
1
, (
1
), pp.
55
69
4.
Allen
,
T.G.
,
Bullock
,
J.
,
Yang
,
X.
,
Javey
,
A.
, and
De Wolf
,
S.
: ‘
Passivating contacts for crystalline silicon solar cells
’,
Nature Energy
,
2019
, pp.
1
15
5.
Shi
,
H.
,
Xia
,
R.
,
Zhang
,
G.
,
Yip
,
H.-L.
, and
Cao
,
Y.
: ‘
Spectral Engineering of Semitransparent Polymer Solar Cells for Greenhouse Applications
’,
Advanced Energy Materials
,
2019
,
9
, (
5
), pp.
1803438
6.
Loik
,
M.E.
,
Carter
,
S.A.
,
Alers
,
G.
,
Wade
,
C.E.
,
Shugar
,
D.
,
Corrado
,
C.
,
Jokerst
,
D.
, and
Kitayama
,
C.
: ‘
Wavelength-Selective Solar Photovoltaic Systems: Powering Greenhouses for Plant Growth at the Food- Energy-Water Nexus
’,
Earth’s Future
,
2017
,
5
, (
10
), pp.
1044
1053
7.
Götz
,
M.
,
Osterthun
,
N.
,
Gehrke
,
K.
,
Vehse
,
M.
, and
Agert
,
C.
: ‘
Ultrathin Nano-Absorbers in Photovoltaics: Prospects and Innovative Applications
’,
Coatings
,
2020
,
10
, (
3
), pp.
218
8.
Allardyce
,
C.S.
,
Fankhauser
,
C.
,
Zakeeruddin
,
S.M.
,
Grätzel
,
M.
, and
Dyson
,
P.J.
: ‘
The influence of greenhouse-integrated photovoltaics on crop production
’,
Solar Energy
,
2017
,
155
, pp.
517
522
9.
Heldt
,
H.-W.
, and
Piechulla
,
B.
:
‘Plant biochemistry’
(
Academic Press
, 2010.
2010
)
10.
Thompson
,
E.P.
,
Bombelli
,
E.L.
,
Shubham
,
S.
,
Watson
,
H.
,
Everard
,
A.
,
D’Ardes
,
V.
,
Schievano
,
A.
,
Bocchi
,
S.
,
Zand
,
N.
, and
Howe
,
C.J.
: ‘
Tinted Semi-Transparent Solar Panels Allow Concurrent Production of Crops and Electricity on the Same Cropland
’,
Advanced Energy Materials
,
2020
,
10
, (
35
), pp.
2001189
11.
Fankhauser
,
C.
, and
Chory
,
J.
: ‘
Light control of plant development
’,
Annual review of cell and developmental biology
,
1997
,
13
, (
1
), pp.
203
229
12.
Christie
,
J.M.
, and
Briggs
,
W.R.
: ‘
Blue light sensing in higher plants
’,
Journal of Biological Chemistry
,
2001
,
276
, (
15
), pp.
11457
11460
13.
Giráldez
,
N.
,
Aparicio
,
P.
, and
Quiñones
,
M.
: ‘
Blue Light Requirement for HC03 Uptake and Its Action Spectrum in Monoraphidium braunii
’,
Photochemistry and photobiology
,
1998
,
68
, (
3
), pp.
420
426
14.
Aparicio
,
P.
,
Witt
,
F.
,
Ramirez
,
J.
,
Quinones
,
M.
, and
Balandin
,
T.
: ‘
Blue-light-induced pH changes associated with NO3-, NO2- and Cl- uptake by the green alga Monoraphidium braunii
’,
Plant, Cell & Environment
,
1994
,
17
, (
12
), pp.
1323
1330
15.
Detweiler
,
A.M.
,
Mioni
,
C.E.
,
Hellier
,
K.L.
,
Allen
,
J.J.
,
Carter
,
S.A.
,
Bebout
,
B.M.
,
Fleming
,
E.E.
,
Corrado
,
C.
, and
Prufert-Bebout
,
L.E.
: ‘
Evaluation of wavelength selective photovoltaic panels on microalgae growth and photosynthetic efficiency
’,
Algal research
,
2015
,
9
, pp.
170
177
16.
Kerner
,
M.
,
Gebken
,
T.
,
Sundarrao
,
I.
,
Hindersin
,
S.
, and
Sauss
,
D.
: ‘
Development of a control system to cover the demand for heat in a building with algae production in a bioenergy facade
’,
Energy and Buildings
,
2019
,
184
, pp.
65
71
17.
Foix-Cablé
,
M.
,
Darmawan
,
R.
,
Sahnoun
,
M.
,
Hindersin
,
S.
,
Kerner
,
M.
, and
Kraume
,
M.
: ‘
Nutrient recycling from the effluent of a decentralized anaerobic membrane bioreactor (AnMBR) treating fresh domestic wastewater by cultivation of the microalgae Acutodesmus obliquus
’,
Water Science and Technology
,
2018
,
78
, (
7
), pp.
1556
1565
18.
Patzelt
,
D.J.
,
Hindersin
,
S.
,
Elsayed
,
S.
,
Boukis
,
N.
,
Kerner
,
M.
, and
Hanelt
,
D.
: ‘
Hydrothermal gasification of Acutodesmus obliquus for renewable energy production and nutrient recycling of microalgal mass cultures
’,
Journal of Applied Phycology
,
2015
,
27
, (
6
), pp.
2239
2250
19.
Patzelt
,
D.J.
,
Hindersin
,
S.
,
Elsayed
,
S.
,
Boukis
,
N.
,
Kerner
,
M.
, and
Hanelt
,
D.
: ‘
Microalgal growth and fatty acid productivity on recovered nutrients from hydrothermal gasification of Acutodesmus obliquus
’,
Algal research
,
2015
,
10
, pp.
164
171
20.
Hindersin
,
S.
,
Leupold
,
M.
,
Kerner
,
M.
, and
Hanelt
,
D.
: ‘
Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors
’,
Bioprocess and biosystems engineering
,
2013
,
36
, (
3
), pp.
345
355
21.
Hindersin
,
S.
,
Leupold
,
M.
,
Kerner
,
M.
, and
Hanelt
,
D.
: ‘
Key parameters for outdoor biomass production of Scenedesmus obliquus in solar tracked photobioreactors
’,
Journal of applied phycology
,
2014
,
26
, (
6
), pp.
2315
2325
This content is only available via PDF.