Agrivoltaics has only limited commercial application, despite its potential to adapt agriculture to the effects of the climate crisis. Looking for an answer on how agrivoltaics can achieve commercial breakthrough, we assume that agrivoltaics provides synergetic value to agriculture depending on the context. We perform a Techno-Economic Assessment based on the case of a horticulture farm in central Chile, where high irradiation causes adverse effects to lettuce. This allows us to monetize agrivoltaics synergetic characteristics of maintaining cropland and providing shading. We present a low-cost agrivoltaics design adapted to Chilean horticulture and find that the consideration of the agricultural context leads to a higher Net Present Value and shorter payback period for an agrivoltaics plant compared to a ground-mounted photovoltaic plant. This implies that a decisive step towards commercial success is identifying the right agricultural context, where agrivoltaics can create economic synergies for agriculture by providing climatic protection.

1.
IRENA
.
Renewable Energy Statistics 2020.
(
2020
).
2.
ITRPV
.
International Technology Roadmap for Photovoltaic
.
Itrpv
76
(
2020
).
3.
Weselek
,
A.
 et al. 
Agrophotovoltaic systems: applications, challenges, and opportunities. A review
.
Agron. Sustain. Dev.
39
,
1
20
(
2019
).
4.
Trommsdorff
,
M.
An Economic Analysis of Agrophotovoltaics: Opportunities, Risks and Strategies towards a More Efficient Land Use
.
Const. Econ. Netw. Working Pa
,
35
(
2016
).
5.
Schindele
,
S.
 et al. 
Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications
.
Appl. Energy
265
,
114737
(
2020
).
6.
Beck
,
M.
 et al. 
Combining PV and food crops to agrophotovoltaic - optimization of orientation and harvest
. in
European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC
) <27, 2012,
Frankfurt
>
49
, (
2012
).
7.
Dupraz
,
C.
 et al. 
Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaics schemes
.
Renew. Energy
36
,
2725
2732
(
2011
).
8.
Barron-Gafford
,
G. A.
 et al. 
Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands
.
Nat. Sustain.
2
,
848
855
(
2019
).
9.
Marrou
,
H.
Co-locating food and energy
.
Nat. Sustain.
2
,
793
794
(
2019
).
10.
|Méso|Star>. Solstice. (
2020
).
11.
NREL
.
System Advisor Model (SAM) - About.
(
2020
). Available at: https://sam.nrel.gov/about-sam.html. (Accessed: 16th October 2020)
12.
Ministerio de Energía. Explorador Solar
. (
2019
). Available at: http://solar.minenergia.cl/exploracion. (Accessed: 16th October 2020)
13.
Lauer
,
M.
Methodology guideline on techno economic assessment (TEA
).
Intell. Energy Eur.
25
(
2008
).
14.
BancoEstado. Financiamiento Proyectos Eficiencia Energética
. (
2018
). Available at: www.bancoestado.cl/imagenes/_pequenas-empresas/productos/financiamiento/proyectos-eficiencia-energetica.asp. (Accessed: 16th October 2020)
15.
Ministerio de Energía
.
MODIFICA LA LEY GENERAL DE SERVICIOS ELÉCTRICOS, CON EL FIN DE INCENTIVAR EL DESARROLLO DE LAS GENERADORAS RESIDENCIALES.
4
(
2018
).
16.
Enel.
Tarifa BT4.3.
1
14
(
2019
).
17.
ODEPA
.
Ficha técnico-económica: Lechuga - Región Metropolitana
. (
2019
). Available at: https://www.odepa.gob.cl/fichas_de_costo/fichas_pdf/lechuga_rm_2013-14.pdf. (Accessed: 16th October 2020)
18.
CNE
.
Generación Distribuida - Instalaciones Inscritas
. (
2020
). Available at: http://datos.energiaabierta.cl/dataviews/235587/generacion-distribuida-instalaciones-inscritas/. (Accessed: 16th October 2020)
19.
Akira
,
Nagashima
&
Sekiyama
,
Takashi
. (
2020
).
Solar Sharing: Changing the world and life.
This content is only available via PDF.