The effects of the surface undulation on the development of boundary layer instabilities are studied in the supersonic boundary layer. The direct numerical simulations are performed for the boundary layer on a flat plate at flow Mach number M = 6. The surface undulation is considered as the means of passive flow control of the laminar-turbulent transition. It has been found that a wavy portion of the surface located at some distance from the leading edge can significantly reduce the amplitude of fluctuations downstream. The effect of suppressing disturbances significantly increases with increasing both the number of waves on the surface (i.e., the length of the wavy portion), and their depth.

1.
J.J.
Bertin
,
Hypersonic Aerodynamics
(
AIAA
,
1994
).
2.
L.M.
Mack
,
Boundary Layer Stability Theory
(JPL Doc. 900-277-REV-A (NASA CR-131501),
1969
).
3.
S.A.
Gaponov
and
A.A.
Maslov
,
Development of disturbances in compressible flows
(
Novosibirsk
,
Nauka
,
1980
).
4.
A.
Demetriades
,
AIAA Paper No. 1974–535
, (
1974
).
5.
J.M.
Kendall
,
AIAA J.
13
,
290
299
(
1975
).
6.
K.F.
Stetson
,
E.R.
Thompson
,
J.C.
Donaldson
, and
L.G.
Siler
.
AIAA Paper No. 83-1761
, (
1983
).
7.
Wendt
,
M. Simen
, and
A.
Hanifi
,
Phys. Fluids
7
,
877
887
(
1995
).
8.
A.A.
Maslov
,
A.A.
Sidorenko
, and
A. N.
Shiplyuk
,
J. Applied Mech. Tech. Phys.
38
,
64
68
(
1997
).
9.
S.A.
Gaponov
,
J. Applied Mech. Tech. Phys.
16
,
95
98
(
1975
).
10.
S.A.
Gaponov
,
Fluid Dynamics
12
,
33
38
(
1977
).
11.
A.V.
Fedorov
,
N.D.
Malmuth
,
A.
Rasheed
, and
H.G.
Hornung
,
AIAA J.
39
,
605
610
(
2001
).
12.
A.
Rasheed
,
H.G.
Hornung
,
A. V.
Fedorov
, and
N. D.
Malmuth
,
AIAA J.
40
,
481
489
(
2002
).
13.
A.
Fedorov
,
A.
Shiplyuk
,
A.
Maslov
,
E.
Burov
, and
N.
Malmuth
.
J. Fluid Mech.
479
,
99
124
(
2003
).
14.
A.N.
Shiplyuk
,
E.V.
Burov
,
A.A.
Maslov
, and
V.M.
Fomin
,
J. Applied Mech. Tech. Phys.
45
,
286
291
(
2004
).
15.
A.
Fedorov
,
V.
Kozlov
,
A.
Shiplyuk
,
A.
Maslov
, and
N.
Malmuth
,
AIAA J.
44
,
1866
1871
(
2006
).
16.
I.V.
Egorov
,
A.V.
Fedorov
, and
V.G.
Soudakov
,
J. Fluid Mech.
601
,
165
187
(
2008
).
17.
N.D.
Sandham
and
H.
Ludeke
,
AIAA J.
47
,
2243
2252
(
2009
).
18.
V.
Wartemann
,
H.
Ludeke
, and
N.D.
Sandham
,
AIAA J.
50
,
1281
1290
(
2012
).
19.
V.
Wartemann
,
A.
Wagner
,
T.
Giese
,
T.
Eggers
, and
K.
Hanneman
,
CEAS Space J.
6
,
13
22
(
2014
).
20.
X.
Wang
and
X.
Zhong
,
Phys. Fluids
24
,
034105
(
2012
).
21.
S.V.
Lukashevich
,
A. A.
Maslov
,
A. N.
Shiplyuk
,
A. V.
Fedorov
, and
V.G.
Soudakov
,
AIAA J.
50
,
1897
1904
(
2012
).
22.
D.
Bountin
,
T.
Chimitov
,
A.
Maslov
,
A.
Novikov
,
I.
Egorov
,
A.
Fedorov
, and
S.
Utyuzhnikov
,
AIAA J.
51
,
1203
1210
(
2013
).
23.
L.
Duan
,
X.
Wang
and
X.
Zhong
,
AIAA J.
51
,
266
270
(
2013
).
24.
K.D.
Fong
,
X.
Wang
and
X.
Zhong
,
Comp. Fluids
96
,
350
367
(
2014
).
25.
K.D.
Fong
,
X.
Wang
,
Y.
Huang
,
X.
Zhong
,
G.R.
McKieman
,
R.A.
Fischer
, and
S.P.
Schneider
,
AIAA J.
53
,
3138
3144
(
2015
).
26.
A. N.
Kudryavtsev
and
D. V.
Khotyanovsky
,
Thermophysics and Aeromechanics
22
,
559
568
(
2015
).
27.
D. V.
Khotyanovsky
,
A. N.
Kudryavtsev
,
Thermophysics and Aeromechanics
23
,
809
818
(
2016
).
This content is only available via PDF.