The paper presents the results of thermal transport properties study of CsPbBr3 perovskite at room temperature. The samples were fabricated with the use of Bridgman method. For experimental investigations, the photoacoustic method in gas-microphone configuration was used. The evaluated thermal conductivity was found to be equal 1±0.3 W/(m K). Additionally, thermal conductivity was simulated with the use of equilibrium molecular dynamics approach. The value calculated with the simulation approach was found to be equal to 0.75±0.8 W/(m K). Thus, one can state good agreements of the results of simulations and experimental ones.

1.
J.
Shi
,
W.
Ge
,
J.
Zhu
,
M.
Saruyama
, and
T.
Teranishi
,
ACS Appl. Nano Mater.
(
2020
).
2.
A. K.
Jena
,
A.
Kulkarni
, and
T.
Miyasaka
,
Chem. Rev.
119
,
3036
(
2019
).
3.
R.
Su
,
S.
Ghosh
,
J.
Wang
,
S.
Liu
,
C.
Diederichs
,
T.C.H.
Liew
, and
Q.
Xiong
,
Nat. Phys.
16
,
30
(
2020
).
4.
K.
Wang
,
D.
Yang
,
C.
Wu
,
M.
Sanghadasa
, and
S.
Priya
,
Prog. Mater. Sci.
106
,
00580
(
2019
).
5.
M.
Kulbak
,
S.
Gupta
,
N.
Kedem
,
I.
Levine
,
T.
Bendikov
,
G.
Hodes
, and
D.
Cahen
,
J. Phys. Chem. Lett.
7
,
67
(
2016
).
6.
X.
Li
,
Y.
Tan
,
H.
Lai
,
S.
Li
,
Y.
Chen
,
S.
Li
,
P.
Xu
, and
J.
Yang
,
ACS Appl. Mater. Interfaces
11
,
29746
(
2019
).
7.
Y.
Ding
,
B.
He
,
J.
Zhu
,
W.
Zhang
,
G.
Su
,
J.
Duan
,
Y.
Zhao
,
H.
Chen
, and
Q.
Tang
,
ACS Sustain. Chem. Eng.
7
,
9286
(
2019
).
8.
A.
Minnich
and
G.
Chen
,
Appl. Phys. Lett.
91
,
073105
(
2007
).
9.
S.
Giaremis
,
J.
Kioseoglou
,
P.
Desmarchelier
,
A.
Tanguy
,
M.
Isaiev
,
I.
Belabbas
,
P.
Komninou
, and
K.
Termentzidis
,
ACS Appl. Energy Mater.
3
,
2682
(
2020
).
10.
A. T.
Pham
,
M.
Barisik
, and
B.
Kim
,
Int. J. Precis. Eng. Manuf.
15
,
323
(
2014
).
11.
Z.
Wang
,
Mater. Today Commun.
22
,
00822
(
2020
).
12.
K.
Dubyk
,
L.
Chepela
,
P.
Lishchuk
,
A.
Belarouci
,
D.
Lacroix
, and
M.
Isaiev
,
Appl. Phys. Lett.
115
,
021902
(
2019
).
13.
I. A.
Lujan-Cabrera
,
C. F.
Ramirez-Gutierrez
,
J. D.
Castano-Yepes
, and
M. E.
Rodriguez-Garcia
,
Phys. B Condens. Matter
560
,
33
(
2019
).
14.
C. F.
Ramirez-Gutierrez
,
H. D.
Martinez-Hernandez
,
I. A.
Lujan-Cabrera
, and
M. E.
Rodriguez-Garcia
,
Sci. Rep.
9, (2019
).
15.
J.
Song
,
Q.
Cui
,
J.
Li
,
J.
Xu
,
Y.
Wang
,
L.
Xu
,
J.
Xue
,
Y.
Dong
,
T.
Tian
,
H.
Sun
, and
H.
Zeng
,
Adv. Opt. Mater.
5
,
700157
(
2017
).
16.
C. C.
Stoumpos
,
C. D.
Malliakas
,
J. A.
Peters
,
Z.
Liu
,
M.
Sebastian
,
J.
Im
,
T. C.
Chasapis
,
A. C.
Wibowo
,
D. Y.
Chung
,
A. J.
Freeman
,
B. W.
Wessels
, and
M. G.
Kanatzidis
,
Cryst. Growth Des.
13
,
2722
(
2013
).
17.
P.
Lishchuk
,
M.
Isaiev
,
L.
Osminkina
,
R.
Burbelo
,
T.
Nychyporuk
, and
V.
Timoshenko
,
Phys. E Low-Dimensional Syst. Nanostructures
107
,
3
(
2019
).
18.
L.
Kubicar
,
V.
Vretenar
, and
V.
Bohac
,
Solid State Phenom.
138
,
3
(
2008
).
19.
W.
Lee
,
H.
Li
,
A. B.
Wong
,
D.
Zhang
,
M.
Lai
,
Y.
Yu
,
Q.
Kong
,
E.
Lin
,
J. J.
Urban
,
J. C.
Grossman
, and
P.
Yang
,
Proc. Natl. Acad. Sci.
114
,
8693
(
2017
).
20.
S. A.
Khrapak
,
M.
Chaudhuri
, and
G. E.
Morfill
,
J. Chem. Phys.
134
,
054120
(
2011
).
21.
M.
Lai
,
A.
Obliger
,
D.
Lu
,
C. S.
Kley
,
C. G.
Bischak
,
Q.
Kong
,
T.
Lei
,
L.
Dou
,
N. S.
Ginsberg
,
D. T.
Limmer
, and
P.
Yang
,
Proc. Natl. Acad. Sci.
115
,
929
(
2018
).
22.
S.
Plimpton
,
J. Comput. Phys.
117
, (
1995
).
23.
V.
Kuryliuk
,
O.
Nepochatyi
,
P.
Chantrenne
,
D.
Lacroix
, and
M.
Isaiev
,
J. Appl. Phys.
126
,
055109
(
2019
).
24.
L. T.
Kong
,
G.
Bartels
,
C.
Campana
,
C.
Denniston
, and
M. H.
MGser
,
Comput. Phys. Commun.
180
,
004
(
2009
).
25.
L. T.
Kong
,
Comput. Phys. Commun.
182
,
220
(
2011
).
26.
C.
Gehrmann
and
D. A.
Egger
,
Nat. Commun.
10
, (
2019
).
This content is only available via PDF.