A system-level evaluation of a concentrating solar power (CSP) configuration, with high-temperature sodium boiler receiver, direct-contact NaCl phase change material (PCM) storage and a Stirling engine array at 1 MWe scale was performed using the modelling framework of SolarTherm to provide an estimate of system costs and comparison to a reference 100 MWe two-tank molten salt system. Assuming an allowable receiver peak flux limit of 1.75 MWth/m2 and a Stirling engine efficiency of 34.6%, a levelised cost of energy (LCOE) of 137 USD/MWhe is obtained via genetic optimisation of parameters including solar multiple, receiver size, and storage component geometry. For an optimistic power cycle efficiency at 75% of the Carnot limit, the calculated LCOE is 109 USD/MWhe. Assuming safety risks can be mitigated without major additional cost, this novel concept holds promise when compared to the reference case that has an LCOE of 123 USD/MWhe, especially for small-scale opportunities either off-grid or at the fringe-of-grid. As this concept operates at very high temperature, the thermal efficiency of the receiver is lower than for a conventional CSP plant, and the storage system is more expensive on a unit-cost basis due to the use of high strength alloys in the tank. However, these drawbacks are offset by the use of a low-cost steel lattice tower design which is feasible at small scale, and by high efficiency power conversion at ∼800°C.

1.
J.
Coventry
,
J.
Pye
,
A.
Kumar
,
S.
Iyer
,
Z.
Kee
and
W.
Lipiński
,
A sodium boiler and phase-change energy storage system
,
AIP Conference Proceedings
2126
(
1
),
060002
(
2019
).
2.
D. R.
Adkins
,
C. E.
Andraka
,
J. B.
Moreno
,
T. A.
Moss
,
K. S.
Rawlinson
and
S. K.
Showalter
,
Heat Pipe Solar Receiver Development Activities at Sandia National Laboratories
,
presented at the Renewable and Advanced Energy Systems for the 21st Century Conference
,
1999
(unpublished).
3.
W. M.
Phillips
and
J. W.
Stearns
,
Alkali Metal/Halide Thermal Energy Storage Systems Performance Evaluation
,
Journal of Solar Energy Engineering
109
(
3
),
235
237
(
1987
).
4.
P. K.
Falcone
,
A Handbook for Solar Central Receiver Design.
(
1986
).
5.
A.
Heinzel
,
W.
Hering
,
J.
Konys
,
L.
Marocco
,
K.
Litfin
,
G.
Müller
,
J.
Pacio
,
C.
Schroer
,
R.
Stieglitz
,
L.
Stoppel
,
A.
Weisenburger
and
T.
Wetzel
,
Liquid Metals as Efficient High-Temperature Heat-Transport Fluids
,
Energy Technology
5
(
7
),
1026
1036
(
2017
).
6.
P.
Scott
,
A. De la
Calle
,
J.
Hinkley
and
J.
Pye
,
SolarTherm: A Flexible Modelica-based Simulator for CSP Systems.
(
2016
).
7.
M. A.
Meybodi
and
A. C.
Beath
,
Impact of cost uncertainties and solar data variations on the economics of central receiver solar power plants: An Australian case study
,
Renewable Energy
93
,
510
524
(
2016
).
8.
AUSTELA
,
The NREL System Advisor Model for Australian CSP Stakeholders (SAM)
, http://www.austela.net.au/projects
9.
NREL
,
SolarPILOT User’s Manual
,
2015
.
10.
Y.
Goswami
,
Principles of Solar Engineering
, 3rd ed. (
CRC Press
,
Boca Raton
,
2015
).
11.
D. L.
Siebers
and
J. S.
Kraabel
,
Estimating convective energy losses from solar central receivers.
(
1984
).
12.
J. K.
Fink
and
L.
Leibowitz
,
Thermodynamic and transport properties of sodium liquid and vapor
, Report No. ANL/RE-95/2,
1995
.
13.
A. Sowbhagya Madhusudhan
Rao
,
Thermophysical Properties of NaCl, NaBr and NaF by γ-Ray Attenuation Technique.
(
2013
).
14.
A. D.
Kirshenbaum
,
J. A.
Cahill
,
P. J.
McGonigal
and
A. V.
Grosse
,
The density of liquid NaCl and KCl and an estimate of their critical constants together with those of the other alkali halides
,
Journal of Inorganic and Nuclear Chemistry
24
(
10
),
1287
1296
(
1962
).
15.
P. E.
Ohlsen
, Thermal conductivity of sodium chloride within the temperature range 375°K to 637°K, Masters Theses,
Missouri University of Science and Technology
,
1956
.
16.
V.
Golyshev
and
M.
Gonik
,
A standard reference material for thermal conductivity of semitransparent melts.
(
2001
).
17.
V.
Golyshev
,
M.
Gonik
and
V.
Tsvetovsky
,
Study of thermal conductivity close to the melting point.
(
2003
).
18.
M. W. J.
Chase
,
NIST-JANAF Thermochemical Tables, Fourth Edition,
,
J. Phys. Chem. Ref. Data, Monograph
9
,
1
1951
(
1998
).
19.
M.
Aghaeimeybodi
,
A.
Beath
and
B.
Webby
,
Techno-economic analysis of solar tower reference plant
, https://astri.org.au/wp-content/uploads/2014/11/P01-Techno-economic-analysis-of-solar-tower-reference-plant-Medhi.pdf
20.
G. C. National Renewable Energy Laboratory
,
System Advisor Model Version 2018.11.11 (SAM 2018.11.11)
, https://sam.nrel.gov/content/downloads
21.
P. R.
Fraser
,
Stirling Dish System Performance Prediction Model
, M.Sc. thesis,
University of Wisconsin-Madison
,
2008
.
22.
B. D.
Kelly
,
Advanced Thermal Storage for Central Receivers with Supercritical Coolants
, Report No. DOE/GO18149, 2010.
23.
J.
Rea
,
C.
Oshman
,
M.
Olsen
,
C. L.
Hardin
,
G. C.
Glatzmaier
,
N.
Siegel
,
P. A.
Parilla
,
D.
Ginley
and
E. S.
Toberer
,
Performance modeling and techno-economic analysis of a modular concentrated solar power tower with latent heat storage.
(
2018
).
24.
K.
Niedermeier
,
L.
Marocco
,
J.
Flesch
,
G.
Mohan
,
J.
Coventry
and
T.
Wetzel
,
Performance of molten sodium vs. molten salts in a packed bed thermal energy storage
,
Applied Thermal Engineering
141
,
368
377
(
2018
).
25.
G.
Mohan
,
M.
Venkataraman
,
J.
Gomez-Vidal
and
J.
Coventry
,
Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage
,
Energy Conversion and Management
167
,
156
164
(
2018
).
26.
MetalMiner
,
Nickel Alloy 625 Sheet US
, https://agmetalminer.com/metal-prices/nickel-alloy/
28.
MEPS
,
World Stainless Steel Prices - $US/metric ton
, www.meps.co.uk/Stainless_Prices.htm
29.
INCO
,
Engineering properties at elevated temperatures
, Report No. INCO-2980,
1963
.
30.
EPRI
,
Solar Thermocline Storage Systems, Preliminary Design Study
,
2010
.
31.
S.
Ranieri
,
G. A. O.
Prado
and
B.
Macdonald
,
Efficiency Reduction in Stirling Engines Resulting from Sinusoidal Motion
,
Energies
11
,
2887
(
2018
).
32.
J.
Moore
,
K.
Brun
,
N.
Evans
and
C.
Kalra
,
Development of 1 MWe Supercritical CO2 Test Loop
, presented at the
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
2015
(unpublished).
This content is only available via PDF.