The aerodynamic loads on heliostats have been investigated through an extensive range of experimental studies at the University of Adelaide in association with the Australian Solar Thermal Research Institute (ASTRI). Applied modelling techniques using spires and roughness elements were adopted for generation and characterisation of the temporal and spatial turbulence fluctuations, matching those in the lower region of the atmospheric boundary layer (ABL) where full-scale heliostats are positioned. Heliostat wind loads were found to be highly dependent on the critical scaling parameters of the heliostat and the turbulence intensities and scales in the ABL flow. The peak drag and lift coefficients on heliostats followed a similar variation with elevation and azimuth angles to those previously reported in the literature at a similar turbulence intensity. However, the current study revealed a linear increase of the peak drag and lift coefficients on heliostats in operating and stow positions with a parameter defined by the product of the turbulence intensity and the ratio of the turbulence length scales to the heliostat chord length.

1.
J. A.
Peterka
and
R. G.
Derickson
,
Wind load design methods for ground-based heliostats and parabolic dish collectors
(
Sandia National Laboratories
,
Albuquerque, New Mexico
,
1992
), SAND92-7009.
2.
J. A.
Peterka
,
Z.
Tan
,
B.
Bienkiewicz
and
J.
Cermak
,
Wind loads on heliostats and parabolic dish collectors: Final subcontractor report
(
Solar Energy Research Institute
,
Golden, Colorado
,
1988
), SERI/STR-253-3431.
3.
G. J.
Kolb
,
C. K.
Ho
,
T. R.
Mancini
and
J. A.
Gary
,
Power tower technology roadmap and cost reduction plan
(
Sandia National Laboratories
,
Albuquerque
,
2011
), SAND2011-2419.
4.
M. J.
Emes
,
M.
Arjomandi
and
G. J.
Nathan
,
Effect of heliostat design wind speed on the levelised cost of electricity from concentrating solar thermal power tower plants
,
Solar Energy
115
,
441
451
(
2015
).
5.
M. J.
Emes
,
M.
Arjomandi
,
F.
Ghanadi
and
R. M.
Kelso
,
Effect of turbulence characteristics in the atmospheric surface layer on the peak wind loads on heliostats in stow position
,
Solar Energy
157
,
284
297
(
2017
).
6.
M. J.
Emes
,
F.
Ghanadi
,
M.
Arjomandi
and
R. M.
Kelso
,
Investigation of peak wind loads on tandem heliostats in stow position
,
Renewable Energy
121
,
548
558
(
2018
).
7.
J. S.
Yu
,
M. J.
Emes
,
F.
Ghanadi
,
M.
Arjomandi
and
R. M.
Kelso
,
Experimental investigation of peak wind loads on tandem operating heliostats within an atmospheric boundary layer
,
Solar Energy
183
,
248
259
(
2019
).
8.
A.
Jafari
,
F.
Ghanadi
,
M.
Arjomandi
,
M. J.
Emes
and
B. S.
Cazzolato
,
Correlating turbulence intensity and length scale with the unsteady lift force on flat plates in an atmospheric boundary layer flow
,
Journal of Wind Engineering and Industrial Aerodynamics
189
,
218
230
(
2019a
).
9.
M. J.
Emes
,
A.
Jafari
,
F.
Ghanadi
and
M.
Arjomandi
, "A method for the calculation of the design wind loads on heliostats," in
SolarPACES
, (
AIP Conference Proceedings
,
Casablanca, Morocco
,
2019a
).
10.
H.
Irwin
,
The design of spires for wind simulation
,
Journal of Wind Engineering and Industrial Aerodynamics
7
,
361
366
(
1981
).
11.
ESDU 85020
,
Characteristics of atmospheric turbulence near the ground, Part II: single point data for strong winds (neutral atmosphere)
,
Engineering Sciences Data Unit
,
London
,
2001
, ESDU 85020.
12.
A.
Pfahl
,
M.
Randt
,
F.
Meier
,
M.
Zaschke
,
C.
Geurts
and
M.
Buselmeier
,
A holistic approach for low cost heliostat fields
,
Energy Procedia
69
,
178
187
(
2015
).
13.
A.
Jafari
,
F.
Ghanadi
,
M. J.
Emes
,
M.
Arjomandi
and
B. S.
Cazzolato
,
Measurement of unsteady wind loads in a wind tunnel: scaling of turbulence spectra
,
Journal of Wind Engineering and Industrial Aerodynamics
193
,
103955
(
2019b
).
14.
J. A.
Peterka
,
Z.
Tan
,
J. E.
Cermak
and
B.
Bienkiewicz
,
Mean and peak wind loads on heliostats
,
Journal of Solar Energy Engineering
111
,
158
164
(
1989
).
15.
A.
Jafari
,
F.
Ghanadi
,
M. J.
Emes
,
M.
Arjomandi
and
B. S.
Cazzolato
,
"Effect of Free-stream Turbulence on the Drag Force on a Flat Plate
," in
AFMC
,
Adelaide, Australia
,
2018
).
16.
M. J.
Emes
,
A.
Jafari
,
F.
Ghanadi
and
M.
Arjomandi
,
Hinge and overturning moments due to unsteady heliostat pressure distributions in a turbulent atmospheric boundary layer
,
Solar Energy
193
,
604
617
(
2019b
).
17.
C.
Chin
,
R.
Örlü
,
J.
Monty
,
N.
Hutchins
,
A.
Ooi
and
P.
Schlatter
,
Simulation of a large-eddy-break-up device (LEBU) in a moderate Reynolds number turbulent boundary layer, Flow
,
Turbulence and Combustion
98
,
445
460
(
2017
).
18.
A.
Pfahl
,
F.
Gross
,
P.
Liedke
,
J.
Hertel
,
J.
Rheinländer
,
S.
Mehta
,
J. F.
Vásquez-Arango
,
S.
Giuliano
and
R.
Buck
, "Reduced to Minimum Cost: Lay-Down Heliostat with Monolithic Mirror-Panel and Closed Loop Control," in
SolarPACES 2017
, (
AIP Conference Proceedings 2033
,
Santiago
,
2017b
).
19.
K.
Lovegrove
and
W.
Stein
,
Concentrating solar power technology: principles, developments and applications
,
Woodhead Publishing Limited
,
Cambridge, UK
,
2012
.
20.
J.
Vásquez-Arango
,
Dynamic Wind Loads on Heliostats
, PhD Thesis,
DLR, Uni Aachen
,
2016
.
21.
A.
Zeghoudi
and
A.
Chermitti
,
Estimation of the Solar Power Tower Heliostat Position using Neural Network
,
International Journal of Computer Applications
94
,
41
46
(
2014
).
This content is only available via PDF.