In-depth study of the method for modifying the spatial and spectral irradiation distribution from a Fresnel lens concentrating sunlight on a multi-junction solar cell is proposed. An approach considered to constructing a Fresnel profile is based on the principle of independent control of the slope angles of the refracting faces of individual teeth (single lenses) to provide the required compromise between the level of decrease in local concentration in the center of the light spot and the allowable increase in its size to maintain an acceptable average sunlight concentration on solar cell. The limiting angle of rotation of the faces was established by the magnitude of the power capture coefficient (Kint) in a spot of a given size. Two options for the formation of the Fresnel profile are considered: with a constant and variable magnitude of the interception coefficient for sunlight directed by single lenses into focus. Additionally, monitoring was carried out for irradiance distributions within the spectral components of a light flux and photocurrent generation profiles for a top, a middle or a bottom subcell of a multi-junction solar cell. It is shown that with the redistribution of light energy from the center to the periphery of the focal spot, a decrease in the level of local sunlight concentration in its center by a factor of 1.5-2 exists. Simultaneously with the of light power “blurring” in the spot, the pronounced spectral redistribution of power was observed. As a result, an extremely undesirable current limitation mode was established on the significant part of the GaInP/Ga(In)As/Ge multi-junction solar cell from the bottom subcell. To eliminate this current limitation, the options for the defocused position of the solar cell relative to the design focal length of the FL are considered.

1.
Handbook on Concentrator Photovoltaic Technology
, ed. by
C.
Algora
,
I.
Rey-Stolle
(
John Wiley & Sons, Ltd
,
2016
).
2.
H.
Cotal
and
R.
Sherif
,
Proc. of the IEEE 31st IEEE PVSC
,
2005
, pp.
747
750
.
3.
M.Z.
Shvarts
,
V.A.
Grilikhes
,
N.H.
Timoshina
,
A.A.
Soluyanov
,
E.V.
Vlasova
,
Proc. of the 22nd EUPVSEC, Milan, Italy
, 3-7 September
2007
, pp.
126
131
.
4.
W. E.
McMahon
K. E.
Emery
,
D. J.
Friedman
,
L.
Ottoson
,
M. S.
Young
,
J. S.
Ward
,
C. M.
Kramer
,
A.
Duda
,
Sarah
Kurtz
,
Prog. Photovolt. Res. Appl.
,
16
, no.
3
,
213
224
(May
2008
).
5.
V.M.
Emelyanov
,
N.A.
Kalyuzhnyy
,
M.A.
Mintairov
,
S.A.
Mintairov
,
M.Z.
Shvarts
and
V.M.
Lantratov
,
Proc. of the 5th WCPEC
, 6-10 September
2010
, Valencia, Spain, pp.
406
411
.
6.
I.
García
,
P.
Espinet-González
,
I.
Rey-Stolle
and
C.
Algora
,
IEEE Journal of Photovoltaics
.
1
, no.
2
, pp.
219
224
(Oct.
2011
).
7.
Zh.I.
Alferov
,
V.M.
Andreev
,
M.Z.
Shvarts
“High-Efficient Low-Cost Photovoltaics. Recent Developments” Chapter 8 “III-V solar cells and concentrator arrays”, pp.
133
174
(
Springer Series on Optical Sciences
,
2020
).
8.
V.M.
Andreev
,
V.A.
Grilikhes
,
A.A.
Soluyanov
,
E.V.
Vlasova
,
M.Z.
Shvarts
,
Proc. of the 23rd EUPVSEC, Valencia, Spain, 1-5 September 2008
, pp.
126
131
.
9.
M.
Victoria
,
C.
Domínguez
,
I.
Antón
,
G.
Sala
,
Optics express
17
, pp.
6487
92
(
2009
).
10.
I.
Ullah
,
Journal of Daylighting
1
,
2
7
(
2014
).
11.
Y.
Nakata
,
N.
Shibuya
,
T.
Kobe
,
K.
Okamoto
,
A.
Suzuki
,
T.
Tsuji
,
Japanese Journal of Applied Physics
19
,
75
(
1980
).
12.
J.-W.
Pan
,
J.-Y.
Huang
,
C.-M.
Wang
,
H.-F.
Hong
, Y.-P.,
Optics Communications
284
,
4283
4288
(
2011
).
13.
Y.
Jiang
,
Q.
Xie
,
E.
Qu
,
L.
Ren
,
J.
Liang
, and
J.
Wang
,
Appl. Opt.
58
,
5206
5212
(
2019
).
14.
Daniel
Vázquez-Moliní
,
Antonio Álvarez
Fernández-Balbuena
,
Eusebio
Bernabeu
,
Javier Muñoz
de Luna Clemente
,
Alfonso
Domingo-Manrique
,
Ángel
García-Botella
,
Proc. of SPIE
7407
,
74070I
,
2009
.
15.
M.Z.
Shvarts
,
A.A.
Soluyanov
,
Proc. of SPIE 2009 “Optics and Photonics”
2-6 Aug
2009
, paper
7423
14
.
16.
T.-T.
Pham
,
N.-H.
Vu
,
S.
Seoyong
,
International Journal of Energy and Power Engineering
5
,
73
82
(
2016
).
17.
Maxim Z.
Shvarts
,
Viktor M.
Emelyanov
,
Mariia V.
Nakhimovich
,
Andrey A.
Soluyanov
,
Viacheslav M.
Andreev
,
AIP Conf. Proc.
2149
,
070011
(
2019
).
18.
V.A.
Grilikhes
,
V.M.
Andreev
,
A.A.
Soluyanov
,
E.V.
Vlasova
,
M.Z.
Shvarts
,
Proc. of the Fourth Int. Conf. on Solar Concentrators for the Generation of Electricity or Hydrogen
,
El Escorial, Spain
,
2007
, pp
49
52
.
19.
M.Z.
Shvarts
,
V.M.
Andreev
,
V.S.
Gorohov
,
V.A.
Grilikhes
,
A.E.
Petrenko
,
A.A.
Soluyanov
,
N.H.
Timoshina
,
E.V.
Vlasova
,
E.M.
Zaharevich
,
Proc. of the 33rd IEEE PVSC
,
San Diego, CA
, May 11-16,
2008
, paper
403
.
20.
M.Z.
Shvarts
,
A.A.
Soluyanov
,
Proc. of SPIE 2009 “Optics and Photonics”
2-6 Aug
2009
, paper
7423
14
.
21.
M.
Victoria
,
R.
Herrero
,
C.
Dominguez
,
I.
Anton
,
S.
Askins
, and
G.
Sala
,
Prog. Photovolt.: Res. Appl.
21
,
308
(
2013
).
22.
Maxim Z.
Shvarts
,
Mariia V.
Nakhimovich
,
Evgeniya A.
Ionova
,
Nikolay Yu.
Davidyuk
and
Andrey A.
Soluyanov
, in
AIP Conf. Proc.
(
2020
), this Conference (CPV-16).
This content is only available via PDF.