Micro-graphite was incorporated into poly(lactic acid) via solution blending in chloroform with varying concentrations: 0, 5, 10, and 15%wt. Before being poured in the glass mold, the adding micro-graphite is accompanied by stirring at 650 rpm and 60o-C (for 1 hour) to homogenize the dispersion of micro-graphite into the PLA solution. This report is discussing the characterization results of the prepared micro-composites, i.e., crystallinity and electrical properties. The crystallinity was analyzed using X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). Both surface and bulk crystallinity were demonstrating a considerable dependence with the micro-graphite loading. The onset temperature of the melting point has a slight shift about 2-4oC. However, the melting point of neat PLA and micro- composites is not significantly changed. The electrical property was carried by Keithley 2602A SYSTEM SourceMeter to measure their resistivity. In the voltage range of 0-1 volt, the presence of micro-graphite starts to have an impact at 15%wt load. Resistivity decreases become 1,686x104 O.mm from out of the device measurement range. The ATR-FTIR (Attenuated Total Reflection-FTIR) spectra show that the residue of chloroform solvent is not detected in the dry prepared samples. It means the solvent can be predicted totally evaporated from the sample.

1.
E.
Rudnik
, in
Plastic Films in Food Packaging
(
Elsevier
,
2013
), pp.
217
248
.
2.
O.
Avinc
and
A.
Khoddami
,
Fibre Chemistry
41
(
6
),
391
401
(
2009
).
3.
L.
Lei
,
J.
Qiu
and
E.
Sakai
,
Chemical engineering journal
209
,
20
2
(
2012
).
4.
K.
Li
,
K.
Dai
,
X.
Xu
,
G.
Zheng
,
C.
Liu
,
J.
Chen
and
C.
Shen
,
Colloid and Polymer Science
291
(
12
),
2871
2878
(
2013
).
5.
A. M.
El-hadi
,
Appl Phys A
124
(
6
) (
2018
).
6.
B.
Kumar
,
M.
Castro
and
J. F.
Feller
,
Sensors and Actuators B: Chemical
161
(
1
),
621
628
(
2012
).
7.
S. I.
Marras
,
I.
Zuburtikudis
and
C.
Panayiotou
,
Journal of materials science
45
(
23
),
6474
6480
(
2010
).
8.
K. M. Z.
Hossain
,
R. M.
Felfel
,
P. S.
Ogbilikana
,
D.
Thakker
,
D. M.
Grant
,
C. A.
Scotchford
and
I.
Ahmed
,
Macromolecular Materials and Engineering
303
(
4
),
1700628
(
2018
).
9.
R.
Casasola
,
N. L.
Thomas
,
A.
Trybala
and
S.
Georgiadou
,
Polymer
55
(
18
),
4728
4737
(
2014
).
10.
Z.
Antar
,
J.-F.
Feller
,
H.
Noel
,
P.
Glouannec
and
K.
Elleuch
,
Materials Letters
67
(
1
),
210
214
(
2012
).
11.
F.
Mai
,
H.
Deng
,
W.
Tu
,
S.
Chankajorn
,
Q.
Fu
,
E.
Bilotti
and
T.
Peijs
,
Macromolecular Materials and Engineering
300
(
12
),
1257
1267
(
2015
).
12.
J. G.
Speight
,
Handbook of petroleum product analysis
. (
John Wiley & Sons
,
2015
).
13.
M.
Inagaki
,
Y.
Kaburagi
and
Y.
Hishiyama
,
Advanced Engineering Materials
16
(
5
),
494
506
(
2014
).
14.
B.
Xue
,
L.
Ji
,
J.
Deng
and
J.
Zhang
,
Journal of Polymer Engineering
38
(
2
),
167
177
(
2018
).
15.
Y.
Li
,
X.
Huang
,
L.
Zeng
,
R.
Li
,
H.
Tian
,
X.
Fu
,
Y.
Wang
and
W.-H.
Zhong
,
Journal of Materials Science
54
(
2
),
1036
1076
(
2019
).
16.
S.
Peng
,
P.
Zhu
,
Y.
Wu
,
S. G.
Mhaisalkar
and
S.
Ramakrishna
,
Rsc Advances
2
(
2
),
652
657
(
2012
).
17.
A.
Chafidz
,
S.
Al-Zahrani
and
M.
Kaavessina
,
Society of Plastics Engineers
(
2013
).
18.
E. N.
Shohih
,
M.
Kaavessina
,
H. A. S.
Lomi
,
B. P.
Pratiwi
,
S.
Distantina
and
A.
Chafidz
,
Materials Science Forum
981
,
138
143
(
2020
).
19.
B.
Kartick
and
S.
Srivastava
,
Journal of nanoscience and nanotechnology
13
(
6
),
4320
4324
(
2013
).
20.
R.
Siburian
,
H.
Sihotang
,
S. L.
Raja
,
M.
Supeno
and
C.
Simanjuntak
,
Oriental Journal of Chemistry
34
(
1
),
182
18
(
2018
).
21.
S.
Karamipour
,
H.
Ebadi-Dehaghani
,
D.
Ashouri
and
S.
Mousavian
,
Polymer Testing
30
(
1
),
110
11
(
2011
).
22.
M.
Kaavessina
,
I.
Ali
and
S.
Al-Zahrani
,
Procedia Chemistry
4
,
164
171
(
2012
).
23.
T. F. d.
Silva
,
F.
Menezes
,
L. S.
Montagna
,
A. P.
Lemes
and
F. R.
Passador
,
Journal of Applied Polymer Science
,
47273
(
2019
).
This content is only available via PDF.