This work aims to fabricate the raspberry-like nanostructures (SiO2@AgNPS) by electrical exploding wire (EEW) technique with high active surface area, and studies the effect of SiO2@AgNPS on the absorption spectra and surface-enhanced Raman scattering (SERS) activities using Rhodamine 6G dye as probe molecules. The number of AgNPs that decorated the SiO2 surface has been controlled by the number of explosions. The structural properties of the raspberry-like nanostructures (SiO2@AgNPs) have been examined using X-Ray diffraction (XRD) for a different number of explosions. Element analysis and surface morphology have been examined using field emission scanning electron microscopy (FESEM). The absorption spectra of the mixed R6G laser dye (concentration 1x10−6 M) with the raspberry-like nanostructures (SiO2@AgNPS) have been examined by double beam UV-Vis Spectrophotometer. Raman spectra of the R6G mixed with the raspberry-like nanostructures (SiO2@AgNPs) with different number of explosions have been examined using a Horiba HR Evolution 800 Raman microscope system and objective lens was (50 x). All samples have shown satisfactory SERS activity increasing with the number of explosions (increasing of hot spots). The SERS enhancement factor of R6G dye (1x10-6 M) mixed with the raspberry-like nanostructures (SiO2@AgNPS) has reached to (8.8 x 106) at the wave number (1366 cm-1) after being excited by (λexc. = 532nm) laser source. The raspberry-like SiO2@AgNPs nanostructures have exhibited ultra-high sensitivity of SERS signals of Rhodamine 6G (R6G) dye molecules, where a low limit of detection has reached down to 1x10-12M. The raspberry-like SiO2@AgNPs nanostructures have exhibited a superb reproducibility and excellent stability as a SERS substrate to realize the trace detection. EEW technique has not involved using of dangerous chemicals and pollutant organic solvents through the fabrication process. These results suggest that the raspberry-like nanostructures (SiO2@AgNPs) have an advantage in ultra-sensitive devices and molecular detection through surface enhanced Raman scattering (SERS) applications in biological and chemical fields.

1.
Ali
Hashemzadeh
 et al,
Synthesis of MoO2 nanoparticles via the electro-explosion of wire (EEW) method, Mater. Res. Express
6
,
1250d3
(
2019
)
2.
Wan-Ho
Chung
,
Yeon-Taek
Hwang
,
Seung-Hyun
Lee
and
Hak-Sung
Kim
,
Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity
,
Nanotechnology
27
(
20
):
205704
. (
2016
)
3.
Mosier-Boss
,
P. A.
Review of SERS Substrates for Chemical Sensing
,
Nanomaterials
7
,
142
(
2017
)
4.
J.
Chen
,
Y.
Huang
,
P.
Kannan
,
L.
Zhang
,
Z.
Lin
,
J.
Zhang
,
T.
Chen
and
L.
Guo
,
Flexible and Adhesive SERS Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables
,
Anal. Chem.
,
88
,
2149
2155
(
2016
)
5.
Tzounis
,
Lazaros
,
Contreras-Caceres
,
Rafael
,
Schellkopf
,
Leonard
,
Jehnichen
,
Dieter
,
Fischer
,
Dieter
,
Cai
,
Chengzhi
,
Uhlmann
,
Petra
,
Stamm
,
Manfred
;
Controlled growth of Ag nanoparticles decorated onto the surface of SiO2 spheres: a nanohybrid system with combined SERS and catalytic properties
,
RSC Adv.
4
,
17846
. (
2014
)
6.
Yu
Guo
,
Jing
Yu
,
Chonghui
Li
,
Zhen
Li
, Jiepan,
Aihua
Liu
,
Baoyuan
Man
,
Tianfu
Wu
,
Xianwu
Xiu
, and
Chao
Zhang
,
SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver suspension decorated with silver nanoparticles
,
Optics Express
26
, No.
17
,
21784
. (
2018
)
7.
Joaqui’n E. Marti’nez
Porcel
,
Mari’a Bele’n Rivas
Aiello
,
Valeria B.
Arce
,
Desire
Di Silvio
,
Sergio E.
Moya
and
Daniel O.
Ma’rtire
,
Effect of hybrid SiO2@Ag nanoparticles with raspberry-like morphology on the excited states of the photosensitizers Rose Bengal and riboflavin
,
New J. Chem.
43
,
9123
9133
(
2019
)
8.
C.-Y.
Li
,
M.
Meng
,
S.-C.
Huang
,
L.
Li
,
S.-R.
Huang
,
S.
Chen
,
L.-Y.
Meng
,
R.
Panneerselvam
,
S.-J.
Zhang
,
B.
Ren
,
Z.-L.
Yang
,
J.-F.
Li
and
Z.-Q.
Tian
, “
Smart” Ag nanostructures for plasmon-enhanced spectroscopies
,
J. Am. Chem. Soc.
137
,
13784
13787
(
2015
)
9.
G.
Lu
,
H.
Yuan
,
L.
Su
,
B.
Kenens
,
Y.
Fujita
,
M.
Chamtouri
,
M.
Pszona
,
E.
Fron
,
J.
Waluk
,
J.
Hofkens
and
H.
Uji-i
,
Plasmon-Mediated Surface Engineering of Silver Nanowires for Surface-Enhanced Raman Scattering
,
J. Phys. Chem. Lett.
8
,
2774
2779
(
2017
)
10.
Jiaming
Chen
,
Longhua
Guo
,
Bin
Qiu
,
Zhenyu
Lin
and
Tie Wang
ORC
,
Application of ordered nanoparticle self-assemblies in surface-enhanced spectroscopy
,
Mater. Chem. Front.
2
,
835
860
(
2018
)
11.
Zao
Yi
,
Yong
Yi
,
Jiangshan
Luo
,
Xin
Ye
,
Pinghui
Wu
,
Xiaochun
Ji
,
Xiaodong
Jiang
,
Yougen
Yi
and
Yongjian
Tang
,
Experimental and simulative study on surface enhanced Raman scattering of rhodamine 6G adsorbed on big bulk-nanocrystalline metal substrates
,
RSC Adv.
5
,
1718
1729
(
2015
)
12.
Motl
,
N. E.
,
Smith
,
A. F.
,
DeSantis
,
C. J.
,
Skrabalak
,
S. E.
,
ChemInform Abstract: Engineering Plasmonic Metal Colloids Through Composition and Structural Design, ChemInform
45
; Iss.
29
, (
2014
)
13.
Wahadoszamen
,
Md.
,
Rahaman
,
Arifur
,
Hoque
,
Nabil Md.
Rakinul
, I
Talukder
,
Aminul
,
Abedin
,
Kazi
Monowar
,
Haider
,
A. F. M.
Yusuf
,
Laser Raman Spectroscopy with Different Excitation Sources and Extension to Surface Enhanced Raman Spectroscopy
,
Journal of Spectroscopy
2015
, (
2015
)
14.
S.
Gwo
,
H.-Y.
Chen
,
M.-H.
Lin
,
L.
Sun
and
X.
Li
,
Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics
,
Chem. Soc. Rev.
45
,
5672
5716
(
2016
)
15.
V.
Amendola
,
M.
Meneghetti
,
Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles
,
Phys. Chem. Chem. Phys.
11
,
3805
3821
(
2009
)
16.
Ahmed S.
Wasfi
,
Hammad R.
Humud
,
Noor K.
Fadhil
,
Synthesis of core-shell Fe304-Au nanoparticles by electrical exploding wire technique combined with laser pulse shooting
Optics and Laser Technology
111
,
720
726
(
2019
)
17.
C.
Wang
,
B.
Liu
and
X.
Dou
,
Silver Nanotriangles-Loaded Filter Paper for Ultrasensitive SERS Detection Application Benefited by Interspacing of Sharp Edges, Sens
.
Actuators B
231
,
357
364
(
2016
)
18.
Z.
Li
,
M.
Wang
,
Y.
Jiao
,
A.
Liu
,
S.
Wang
,
C.
Zhang
,
C.
Yang
,
Y.
Xu
,
C.
Li
and
B.
Man
,
Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis
,
Sens. Actuators, B
,
255
,
374
383
(
2018
)
19.
X. D.
Tian
,
Y.
Lin
,
J. C.
Dong
,
Y. J.
Zhang
,
S. R.
Wu
,
S. Y.
Liu
,
Y.
Zhang
,
J. F.
Li
and
Z. Q.
Tian
,
Synthesis of Ag Nanorods with Highly Tunable Plasmonics toward Optimal Surface-Enhanced Raman Scattering Substrates Self-Assembled at Interfaces
,
Adv. Opt. Mater.
5
,
1700581
(
2017
)
20.
S. J.
Lee
,
A. R.
Morrill
and
M.
Moskovits
,
Hot Spots in Silver Nanowire Bundles for Surface-Enhanced Raman Spectroscopy
,
J. Am. Chem. Soc.
128
,
2200
220
(
2006
)
21.
Bo
Yang
,
Sila
Jin
,
Shuang
Guo
,
Yeonju
Park
,
Lei
Chen
,
Bing
Zhao
and
Young
Mee Jung
,
Recent Development of SERS Technology: Semiconductor-Based Study
,
ACS Omega
4
(
23
):
20101
20108
(
2019
)
22.
P.
Li
,
A.
Kumar
,
J.
Ma
,
Y.
Kuang
,
L.
Luo
,
X.
Sun
,
Density gradient ultracentrifugation for colloidal nanostructures separation and investigation
,
Science Bulletin
4
, (
2018
)
23.
S.
Gupta
,
M.
Agrawal
,
M.
Conrad
,
N. A.
Hutter
,
P.
Olk
,
F.
Simon
,
L. M.
Eng
,
M.
Stamm
and
R.
Jordan
,
Poly (2-(dimethylamino) ethyl methacrylate) Brushes with Incorporated Nanoparticles as a SERS Active Sensing Layer
,
Adv. Funct. Mater.
20
,
1756
1761
(
2010
)
24.
ZHI GANG
WU
,
YAN RONG
JIA
,
JIAN
WANG
,
YANG
GUO
,
JIAN FENG
GAO
,
Core-shell SiO2/Ag composite spheres: synthesis, characterization and photocatalytic properties
,
Materials Science-Poland
,
34
(
4
), pp.
806
810
(
2016
)
25.
Jayasmita
Jana
,
Mainak
Ganguly
and
Tarasankar
Pal
,
Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application
,
RSC Adv.
6
,
86174
86211
(
2016
)
26.
Barzan
,
Mohammad
,
Hajiesmaeilbaigi
,
Fereshteh
,
Effect of gold nanoparticles on the optical properties of Rhodamine 6G
,
The European physical Journal D
70
,
121
(
2016
)
27.
P.
Hildebrandt
and
M.
Stockburger
,
Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on suspensional silver
,
J. Phys. Chem.
88
,
5935
5944
(
1984
)
28.
Jianxun
Liu
,
Huilin
He
,
Dong
Xiao
,
Shengtao
Yin
,
Wei
Ji
,
Shouzhen
Jiang
,
Dan
Luo
,
Bing
Wang
, and
Yanjun
Liu
,
Recent Advances of Plasmonic Nanoparticles and their Applications, Materials (Basel)
.
11
(
10
):
1833
(
2018
)
29.
Nasrin
Hooshmanda
and
Mostafa A.
El-Sayeda
,
Collective multipole oscillations direct the plasmonic coupling at the nanojunction interfaces
,
Proc Natl Acad Sci U S A.
116
(
39
):
19299
19304
(
2019
)
30.
M.
Green
and
F. M.
Liu
,
SERS Substrates Fabricated by Island Lithography: The Silver/Pyridine System
,
J. Phys. Chem. B
107
,
13015
(
2003
)
31.
G. C.
Phan-Quang
,
H. K.
Lee
,
I. Y.
Phang
and
X. Y.
Ling
,
Plasmonic colloidosomes as three-dimensional SERS platforms with enhanced surface area for multiphase sub-microliter toxin sensing
,
Angew. Chem., Int.
Ed.
54
,
9691
9695
(
2015
)
32.
Joshua
Raveendran
,
Kevin G.
Stamplecoskie
and
Aristides
Docoslis
,
Tunable Fractal Nanostructures for Surface-Enhanced Raman Scattering via Templated Electrodeposition of Silver on Low-Energy Surfaces
,
ACS Appl. Nano Mater.
3
,
3
,
2665
2679
(
2020
)
33.
Qu
LL
,
Li
DW
,
Xue
JQ
,
Zhai
WL
,
Fossey
JS
,
Long
YT
.
Batch fabrication of disposable screen-printed SERS arrays
,
Lab Chip.
12
,
876
881
(
2012
)
34.
Z.
Zhang
,
T.
Si
,
J.
Liu
,
K.
Han
and
G.
Zhou
,
Controllable synthesis of AgNWs@PDA@ AgNPs core-shell nanocobs based on a mussel-inspired polydopamine for highly sensitive SERS detection
,
RSC Adv.
8
,
27349
(
2018
).
This content is only available via PDF.