The study of fluctuations and diffusion on surfaces with geometries without spherical symmetry can sometimes be daunting due to nontrivial forms acquired by the relevant transport equation. Since there is structural similarity between solutions of the Schroedinger equation and the diffusion equation, we highlight some exact results for the Smorodinsky-Winternitz classes of noncentral potentials with dynamical symmetries that may be used for diffusion in geometries such as tori and wedges.

1.
I.
Parmryd
and
Björn
Önfelt
, “
Consequences of membrane topography
,”
FEBS Journal
280
(
2013
)
2775
2784
doi:.
2.
J. R.
Choi
 et al, “
Quantum features of molecular interactions associated with time-dependent non-central potentials
,”
J. Phys. Commun.
1
(
2017
)
052001
.
3.
K.
Yosida
, “
Brownian motion on the surface of a 3-sphere
,”
Ann. Math. Statist.
20
(
1949
)
292
296
.
4.
K.
Itô
and
H. P.
MacKean
,
Diffusion Processes and their Sample Paths
, (
Springer
,
Berlin
,
1965
).
5.
D. R.
Brillinger
, “
A Particle Migrating Randomly on a Sphere
,”
Jour. Theor. Prob.
,
10
(
2
), (
1997
)
429
443
.
6.
A. A.
Makarov
,
Ya. A.
Smorodinsky
,
Kh.
Valiev
, and
P.
Winternitz
, “
A systematic search for nonrelativistic systems with dynamical symmetries
,”
Nuovo Cim.
A 52
(
1967
)
1061
1084
, .
7.
R.
Khordad
and
H. R. Rastegar
Sedehi
,
“Thermodynamic properties of a double ring-shaped quantum dot at low and high
temperatures,” J. Low Temp. Phys.
190
(
2018
)
200
212
, .
8.
R.
Khordad
,
“The effect of Rashba spin-orbit interaction on electronic and optical properties of a double ring-shaped quantum dot,”
Superlattices Microst.
110
(
2017
)
146
154
,
9.
H.
Shmavonyan
,
“CN-Smorodinsky-Winternitz system in a constant magnetic field,”
Phys. Lett. A
383
(
2019
)
1223
1228
, .
10.
N.
Karthikeyan
and
A. J.
Peter
,
“Effects of built-in fields on the optical gain in a CdO/ZnO quantum dot with the Smorodinsky-Winternitz potential,”
Jour. Nanophotonics
13
(
3
) (
2019
)
036008
, .
11.
S.
Mongkolsakulvong
and
T.D.
Frank
,
“Synchronization and anchoring of two non-harmonic canonical-dissipative oscillators via Smorodinsky-Winternitz potentials,”
Cond. Matt. Phys.
20
(
2017
)
44001
, doi:.
12.
A.
Arda
and
R.
Sever
,
“Non-central potentials, exact solutions and Laplace transform approach,”
J. Math. Chem.
50
(
2012
)
1484
1494
, .
13.
Y.
Li
and
H.
Huang
,
“Nonlinear dynamical symmetries of Smorodinsky-Winternitz and Fokas-Lagerstorm systems,”
Chinese Phys. B
20
Rapid Communication (
2011
)
010302
, .
14.
C.
Berkdemir
,
R.
Server
,
“Modified l-states of diatomic molecules subject to central potentials plus an angle-dependent potential,” J. Math. Chem.
46
(
2009
)
1122
1136
, .
15.
S. M.
Ikhdair
and
R.
Sever
,
“Polynomial solution of non-central potentials,”
Int. J. Theor. Phys.
46
(
2007
)
2384
2395
, .
16.
A.
Durmus
and
F.
Yasuk
“Relativistic and nonrelativistic solution for diatomic molecules in the presence of double ring-shaped Kratzer potential,” J. Chem. Phys.
126
(
2007
)
074108
, .
17.
M. V.
Carpio-Bernido
, “
Path integral quantization of certain noncentral systems with dynamical symmetries
,”
J. Math. Phys.
32
(
1991
)
1799
1807
, .
18.
C.
Grosche
,
G. S.
Pogosyan
,
A. N.
Sissakian
, “
Path integral discussion for Smorodinsky-Winternitz potentials: I. two- and three-dimensional Euclidean space
,”
Fortschr. Phys.
43
(
1995
)
453
521
, .
19.
H.
Hartmann
, “
Die Bewegung eines Körpers in einem ringförmigen Potentialfeld
,”
Theor. Chim. Acta
24
(
1972
)
201
206
, .
20.
C.
Quesne
, “
A new ring-shaped potential and its dynamical invariance algebra
,”
J. Phys.
A 21
(
1988
)
3093
3103
, .
21.
F
Canfora
, “
Complex angular momenta approach for scattering problems in the presence of both monopoles and short range potentials
,”
Phys. Rev. D
94
(
8
) (
2016
)
085030
, .
22.
M. V.
Carpio-Bernido
and
C. C.
Bernido
, “
An Exact Solution of a Ring-Shaped Oscillator plus a (c sec2 θ/r2) Potential
,”
Phys. Lett. A
134
(
1989
)
395
.
23.
M. V.
Carpio-Bernido
and
C. C.
Bernido
, “
Algebraic Treatment of a Double Ring-shaped Oscillator
,”
Phys. Lett. A
137
(
1989
)
1
.
24.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
(
Academic Press
,
Amsterdam
,
1980
).
25.
G. N.
Watson
,
A Treatise on the Theory of Bessel Functions
(
Cambridge University Press
,
Cambridge
,
1962
).
This content is only available via PDF.