Large datasets from a growing number of complex systems have been shown to exhibit a stochastic behavior that belongs to a class of white noise diffusion process with memory. A closed form for the probability density function for this class of diffusion processes can be obtained as a sum-over-all paths using the Hida white noise calculus. This framework can be used to uncover patterns, memory behavior, and mathematical relations in big datasets that could have several million data points. As examples, we start with the diffusion of microprobes in an ageing fibrin which could be important in tissue engineering and regenerative medicine, followed by a stochastic characterization of nucleotide distribution in a DNA sequence of bacterial genomes. The third example shows how the decreasing hard coral cover in the Great Barrier Reef share a common memory behavior with the ecological factors responsible for coral reef degradation such as sea surface temperature and increasing atmospheric CO2 levels. In all cases, a good match between empirical and theoretical mean square deviation and probability density functions are obtained.

1.
T.
Hida
,
H. H.
Kuo
,
J.
Potthoff
, and
L.
Streit
,
White Noise. An Infinite Dimensional Calculus
(
Kluwer
,
Dordrecht
,
1993
).
2.
H. H.
Kuo
,
White Noise Distribution Theory
(
CRC
,
Boca Raton, FL
,
1996
).
3.
N.
Obata
,
White Noise Calculus and Fock Space, Lecture Notes in Mathematics
, Vol.
1577
(
Springer
,
Berlin
,
1994
).
4.
C. C.
Bernido
and
M. V.
Carpio-Bernido
,
Methods and Applications of White Noise Analysis in Interdisciplinary Sciences
(
World Scientific
,
Singapore
,
2014
).
5.
C. C.
Bernido
and
M. V.
Carpio-Bernido
, “
White noise analysis: some applications in complex systems, biophysics and quantum mechanics
,”
Int. J. Mod. Phys. B
26
(
2012
)
1230014
.
6.
W.
Barredo
,
C. C.
Bernido
,
M. V.
Carpio-Bernido
, and
J. B.
Bornales
, “
Modelling non Markovian fluctuations in intracellular biomolecular transport
,”
Math. Biosci.
297
(
2018
)
27
31
.
7.
R.
Aure
,
C. C.
Bernido
,
M. V.
Carpio-Bernido
, and
R. G.
Bacabac
, “
Damped white noise diffusion with memory for diffusing microprobes in ageing fibrin gels
,”
Biophys. Jour.
117
(
2019
)
1029
1036
.
8.
R. R.
Violanda
,
C. C.
Bernido
, and
M. V.
Carpio-Bernido
, “
White noise functional integral for exponentially decaying memory: Nucleotide distribution in bacterial genomes
,”
Phys. Scripta
94
(
2019
)
125006
.
9.
A. R. B.
Elnar
,
C. B.
Cena
,
C. C.
Bernido
, and
M. V.
Carpio-Bernido
, “
Great barrier reef degradation, sea surface temperatures, and atmospheric CO2 levels collectively exhibit a stochastic process with memory
,”
Clim. Dyn.
(submitted).
10.
R. R.
Violanda
and
C. C.
Bernido
,
“Modeling vehicular speed fluctuations as a stochastic process with exponentially decaying memory,” in
9ᵗʰ Jagna International Workshop: Stochastic Analysis – Mathematical Methods and Real-World Models
,
AIP Conference Proceedings
, edited by
C. C.
Bernido
,
M. V.
Carpio-Bernido
,
J.
Bornales
, and
L.
Streit
(
American Institute of Physics, Melville
,
NY
,
2020
), this volume.
11.
G. M. S.
Requioma
,
R. R.
Violanda
and
R. E. S.
Otadoy
,
“White noise analysis of the interplanetary magnetic field for the minimum phase of solar cycle 23,” in
9ᵗʰ Jagna International Workshop: Stochastic Analysis – Mathematical Methods and Real-World Models
,
AIP Conference Proceedings
, edited by
C. C.
Bernido
,
M. V.
Carpio-Bernido
,
J.
Bornales
, and
L.
Streit
(
American Institute of Physics
,
Melville, NY
,
2020
), this volume.
12.
C. C.
Bernido
,
M. V.
Carpio-Bernido
, and
M. G. O.
Escobido
, “
Modified diffusion with memory for cyclone track fluctuations
Phys. Lett., A
378
(
2014
)
2016
2019
;
C. C.
Bernido
,
M. V.
Carpio-Bernido
, and
M. G. O.
Escobido
, “
Modified diffusion with memory for cyclone track fluctuations
Phys. Lett., A
379
(
2015
)
230
231
.
13.
H.-H.
Kuo
, “
Donsker's delta function as a generalized Brownian functional and its application
,”
Theory and Application of Random Fields, Lect. Notes Control Inf. Sci.
, Vol.
49
(Springer, Berlin, 1983)
167
78
.
14.
A.
Lascheck
,
P.
Leukert
,
L.
Streit
, and
W.
Westerkamp
, “
More about Donsker's delta function
,”
Soochow J. Math.
20
(
1994
)
401
18
.
15.
P. A.
Janmey
,
J.
Winer
and
J.
Weisel
, “
Fibrin gels and their clinical and bioengineering applications
,”
J. R. Soc. Interface
6
(
2009
)
1
10
.
16.
Litvinov
,
R.
, and
J.
Weisel
, “
Fibrin mechanical properties and their structural origins
,”
Matrix Biol.
60-61
(
2017
)
110
123
.
17.
K. A.
Jansen
,
R. G.
Bacabac
,
I. K.
Piechocka
,
G. H.
Koenderink
, “
Cells Actively Stiffen Fibrin Networks by Generating Contractile Stress
,”
Biophys. J.
105
(
2013
)
2240
2251
.
18.
M.
Land
 et al., “
Insights from 20 years of bacterial genome sequencing
,”
Funct. Integr. Genomics
15
(
2015
)
141
61
.
19.
V.
Afreixo
,
J. M.
Rodrigues
,
C. A.
Bastos
, and
R. M.
Silva
, “
The exceptional genomic word symmetry along DNA sequences
,”
BMC Bioinform.
17
(
2016
)
59
.
20.
J.
Hérisson
,
G.
Payen
, and
R.
Gherbi
, “
A 3D pattern matching algorithm for DNA sequences
,”
Bioinformatics
23
(
2007
)
680
6
.
21.
E. E.
Kuruoglu
and
P. F.
Arndt
, “
The information capacity of the genetic code: is the natural code optimal?
J. Theor. Biol.
419
(
2017
)
227
37
.
22.
S. E.
Cohen
and
S. S.
Golden
, “
Circadian rhythms in cyanobacteria
,”
Microbiol. Mol. Biol. Rev.
79
(
2015
)
373
85
.
23.
M.
Sobottka
and
A. G.
Hart
, “
A model capturing novel strand symmetries in bacterial DNA
,”
Biochem. Biophys. Res. Commun.
410
(
2011
)
823
8
.
24.
E.
Avershina
and
K.
Rudi
, “
Dominant short repeated sequences in bacterial genomes
,”
Genomics
105
(
2015
)
175
81
.
25.
J. G.
Sumner
,
P. D.
Jarvis
, and
A. R.
Francis
, “
A representation-theoretic approach to the calculation of evolutionary distance in bacteria
,”
J. Phys. A: Math. Theor.
50
(
2017
)
335601
.
26.
G.
De'ath
,
K. E.
Fabricius
,
H.
Sweatman
, and
M.
Puotinen
, “
The 27–year decline of coral cover on the Great Barrier Reef and its causes
,”
Proc. Natl. Acad. Sci.
109
(
2012
)
17995
17999
.
27.
K. R. N.
Anthony
,
J. A.
Maynard
,
G.
Diaz-Pulido
,
P. J.
Mumby
,
P. A.
Marshall
,
L.
Cao
, and
O.
Hoegh-Guldberg
, “
Ocean acidification and warming will lower coral reef resilience
,”
Glob. Change Biol.
17
(
2011
),
1798
1808
; doi: .
28.
K. R. N.
Anthony
,
D. I.
Kline
,
G.
Diaz-Pulido
,
S.
Dove
, and
O.
Hoegh-Guldberg
, “
Ocean acidification causes bleaching and productivity loss in coral reef builders
,”
Proc. Natl. Acad. Sci.
105
(
2008
)
17442
17446
.
29.
J. C.
Orr
 et al, “
Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms
,”
Nature
437
(
2005
)
681
686
.
30.
R.
Albright
,
L.
Caldeira
,
J.
Hosfelt
 et al “
Reversal of ocean acidification enhances net coral reef calcification
,”
Nature
531
(
2016
)
362
365
.
31.
Terry P.
Hughes
 et al, “
Global warming and recurrent mass bleaching of corals
,”
Nature
543
(
2017
)
373
377
.
32.
J.
Hansen
,
M.
Sato
,
G.
Russell
, and
P.
Kharecha
, “
Climate sensitivity, sea level and atmospheric carbon dioxide
,”
Phil. Trans. R. Soc. A
371
,
20120294
. .
33.
P. M.
Lushnikov
,
P.
̌Sulc
, and
K. S.
Turitsyn
, “
Non-Gaussianity in single-particle tracking: Use of kurtosis to learn the characteristics of a cage-type potential
,”
Phys. Rev. E
85
(
2012
)
051905
.
34.
W.
He
,
H.
Song
,
Y.
Su
,
L.
Geng
,
B. J.
Ackerson
,
H. B.
Peng
, and
P.
Tong
, “
Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane
,”
Nat. Commun.
7
(
2016
)
11701
; doi: .
35.
A. V.
Chechkin
,
F.
Seno
,
R.
Metzler
, and
I. M.
Sokolov
, “
Brownian yet non-Gaussian diffusion: from superstatistics to subordination of diffusing diffusivities
,”
Phys. Rev. X
7
(
2017
)
021002
.
36.
J.-H.
Jeon
,
M.
Javanainen
,
H.
Martinez-Seara
,
R.
Metzler
, and
I.
Vattulainen
, “
Protein crowding in lipid bilayers gives rise to non-Gaussian anomalous lateral diffusion of phospholipids and proteins
,”
Phys. Rev. X
6
(
2016
)
021006
.
37.
J. L.
da Silva
and
C. C.
Bernido
, “
Non-Gaussian model for fluctuations with memory
,” (in preparation).
This content is only available via PDF.