The link between Markovian and non-Markovian stochastic processes is examined by looking at the drift and diffusion coefficients. Starting with the Langevin equation, a solution for the Fokker-Planck equation is obtained using white noise analysis. An evaluation of the mean square displacement explicitly shows that the drift coefficient may not play a crucial role in transitions from Markovian to non-Markovian processes. A special case of the solution obtained for the Fokker-Planck equation is fractional Brownian motion which we use to consider absorbing boundaries.

1.
B.-H.
Liu
,
L.
Li
,
Y.-F.
Huang
,
C.-F.
Li
,
G.-C.
Guo
,
E.-M.
Laine
,
H.-P.
Breuer
, and
J.
Piilo
, “
Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems
,”
Nat. Phys.
7
(
2011
)
931
934
.
2.
R.
Metzler
,
J. -H.
Jeon
,
A. G.
Cherstvy
, and
E.
Barkai
. “
Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking
,”
Phys. Chem. Chem. Phys.
16
(
2014
)
24128
.
3.
C. C.
Bernido
and
M. V.
Carpio-Bernido
,
Methods and Applications of White Noise Analysis in Interdisciplinary Sciences
, (
World Scientific
,
Singapore
,
2014
).
4.
W.
Barredo
,
C. C.
Bernido
,
M. V.
Carpio-Bernido
, and
J. B.
Bornales
, “
Modelling non-Markovian fluctuations in intracellular biomolecular transport
.”
Math. Biosci.
297
(
2018
)
27
31
.
5.
R.
Aure
,
C. C.
Bernido
,
M. V.
Carpio-Bernido
, and
R. G.
Bacabac
, “
Damped white noise diffusion with memory for diffusing microprobes in ageing fibrin gels
,”
Biophys. Jour.
117
(
2019
)
1029
1036
.
6.
R. R.
Violanda
,
C. C.
Bernido
, and
M. V.
Carpio-Bernido
, “
White noise functional integral for exponentially decaying memory: Nucleotide distribution in bacterial genomes
,”
Phys. Scripta
94
(
2019
)
125006
.
7.
C. C.
Bernido
and
M. V.
Carpio-Bernido
, “
White noise analysis: some applications in complex systems, biophysics and quantum mechanics
,”
Int. J. Mod. Phys. B
26
(
2012
)
1230014
.
8.
H.
Risken
,
Fokker-Planck Equation
(
Springer
,
Berlin
,
1996
)
63
95
.
9.
T.
Hida
,
H. H.
Kuo
,
J.
Potthoff
, and
L.
Streit
,
White Noise. An Infinite Dimensional Calculus
(
Kluwer
,
Dordrecht
,
1993
).
10.
A.
Molini
,
P.
Talkner
,
G. G.
Katul
, and
A.
Porporato
, “
First passage time statistics of Brownian motion with purely time dependent drift and diffusion
,”
Phys. A: Stat. Mech. Appl.
390
(
2011
)
1841
1852
.
11.
H.-H.
Kuo
, “Donsker's delta function as a generalized Brownian functional and its application,”
Theory and Application of Random Fields, Lect. Notes Control Inf. Sci.
, Vol.
49
(
Springer
,
Berlin
,
1983
)
167
78
.
12.
A.
Lascheck
,
P.
Leukert
,
L.
Streit
, and
W.
Westerkamp
, “
More about Donsker's delta function
,”
Soochow J. Math.
20
(
1994
)
401
18
.
13.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
(
Academic Press
,
2014
).
14.
I.
Calvo
and
R.
Sanchez
, “
The path integral formulation of fractional Brownian motion for the general Hurst exponent
.”
Jour. Phys. A: Math. Theor.
41
(
2008
)
282002
.
15.
J. D.
Jackson
,
Classical Electrodynamics
(
John Wiley Sons
,
2007
).
16.
K. S.
Fa
, “
Solution of Fokker-Planck equation for a broad class of drift and diffusion coefficients
,”
Phys. Rev. E
84
(
2011
)
012102
.
This content is only available via PDF.