We investigated the anomalous diffusion in a system of N–Brownian particles connected by spring driven by one-parameter Mittag-Leffler noise. We presented a solution to the generalized Langevin equation and derived exact expressions for the diffusion coefficient and the variances of the phase space variables of the ith particle in the chain in terms of the Rouse modes. Our results show that all the particles in the linear chain observe subdiffusion. In the limit approaching the Ornstein-Uhlenbeck process, the particles observe normal diffusion indicated by a constant value of the diffusion coefficient in the long-time limit.
REFERENCES
1.
S.
Burov
and E.
Barkai
, “Fractional langevin equation: Overdamped, underdamped, and critical behaviors
,” Phys. Rev. E
78
, 031112
(2008
).2.
S.
Burov
and E.
Barkai
, “Critical exponent of the fractional langevin equation
,” Phys. Rev. Lett.
100
, 070601
(2008
).3.
K.
Hahn
, J.
Kärger
, and V.
Kukla
, “Single-file diffusion observation
,” Phys. Rev. Lett.
76
, 2762
(1996
).4.
C.
Lutz
, M.
Kollmann
, and C.
Bechinger
, “Single-file diffusion of colloids in one-dimensional channels
,” Phys. Rev. Lett.
93
, 026001
(2004
).5.
P.
Demontis
and G. B.
Suffritti
, “Fractional diffusion interpretation of simulated single-file systems in microporous materials
,” Phys. Rev. E
74
, 051112
(2006
).6.
A.
Taloni
and F.
Marchesoni
, “Single-file diffusion on a periodic substrate
,” Phys. Rev. Lett.
96
, 020601
(2006
).7.
C.
Coste
, J.-B.
Delfau
, C.
Even
, and M. Saint
Jean
, “Single-file diffusion of macroscopic charged particles
,” Phys. Rev. E
81
, 051201
(2010
).8.
D. S.
Banks
and C.
Fradin
, “Anomalous diffusion of proteins due to molecular crowding
,” Biophys. J.
89
, 2960
–2971
(2005
).9.
R.
Shusterman
, S.
Alon
, T.
Gavrinyov
, and O.
Krichevsky
, “Monomer dynamics in double-and single-stranded dna polymers
,” Phys. Rev. Lett.
92
, 048303
(2004
).10.
S.
Girst
, V.
Hable
, G.
Drexler
, C.
Greubel
, C.
Siebenwirth
, M.
Haum
, A.
Friedl
, and G.
Dollinger
, “Subdiffusion supports joining of correct ends during repair of dna double-strand breaks
,” Sci Rep.
3
, 2511
(2013
).11.
S. C.
Weber
, A. J.
Spakowitz
, and J. A.
Theriot
, “Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm
,” Phys. Rev. Lett.
104
, 238102
(2010
).12.
S.
Adelman
, “Generalized langevin theory for many-body problems in chemical dynamics: General formulation and the equivalent harmonic chain representation
,” The Journal of Chemical Physics
71
, 4471
–4486
(1979
).13.
S.
Adelman
and J.
Doll
, “Generalized langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids
,” The Journal of chemical physics
64
, 2375
–2388
(1976
).14.
J.
Łuczka
, “Non-markovian stochastic processes: Colored noise
,” Chaos: An Interdisciplinary Journal of Nonlinear Science
15
, 026107
(2005
).15.
E.
Lutz
, “Fractional langevin equation
,” Phys. Rev. E
64
, 051106
(2001
).16.
A.
Taloni
and M. A.
Lomholt
, “Langevin formulation for single-file diffusion
,” Physical Review E
78
, 051116
(2008
).17.
L.
Lizana
, T.
Ambjörnsson
, A.
Taloni
, E.
Barkai
, and M. A.
Lomholt
, “Foundation of fractional langevin equation: harmonization of a many-body problem
,” Physical Review E
81
, 051118
(2010
).18.
S. C.
Weber
, J. A.
Theriot
, and A. J.
Spakowitz
, “Subdiffusive motion of a polymer composed of subdiffusive monomers
,” Physical Review E
82
, 011913
(2010
).19.
H.
Vandebroek
and C.
Vanderzande
, “Transient behaviour of a polymer dragged through a viscoelastic medium
,” The Journal of chemical physics
141
, 114910
(2014
).20.
H.
Vandebroek
and C.
Vanderzande
, “On the generalized langevin equation for a rouse bead in a nonequilibrium bath
,” Journal of Statistical Physics
167
, 14
–28
(2017
).21.
H.
Vandebroek
and C.
Vanderzande
, “The effect of active fluctuations on the dynamics of particles, motors and dna-hairpins
,” Soft matter
13
, 2181
–2191
(2017
).22.
A.
Viñales
and G.
Paissan
, “Velocity autocorrelation of a free particle driven by a mittag-leffler noise: Fractional dynamics and temporal behaviors
,” Physical Review E
90
, 062103
(2014
).23.
T.
Sandev
, ž.
Tomovski
, and J. L.
Dubbeldam
, “Generalized langevin equation with a three parameter mittag-leffler noise
,” Physica A: Statistical Mechanics and its Applications
390
, 3627
–3636
(2011
).24.
T.
Sandev
and ž.
Tomovski
, “Asymptotic behavior of a harmonic oscillator driven by a generalized mittag-leffler noise
,” Physica Scripta
82
, 065001
(2010
).25.
A. D.
Viñales
, K.
Wang
, and M. A.
Desposito
, “Anomalous diffusive behavior of a harmonic oscillator driven by a mittag-leffler noise
,” Physical Review E
80
, 011101
(2009
).26.
A. D.
Viñales
and M. A.
Desposito
, “Anomalous diffusion: Exact solution of the generalized langevin equation for harmonically bounded particle
,” Physical Review E
73
, 016111
(2006
).27.
A. D.
Viñales
and M. A.
Desposito
, “Anomalous diffusion induced by a mittag-leffler correlated noise
,” Physical Review E
75
, 042102
(2007
).28.
E.
Lutz
, “Anomalous diffusion through coupling to a fractal environment: Microscopic derivation of the" whip-back" effect
,” EPL (Europhysics Letters)
54
, 293
(2001
).29.
K.
Miller
and B.
Ross
, An Introduction to the Fractional Calculus and Fractional Differential Equations
(Wiley
, 1993
).
This content is only available via PDF.
© 2020 Author(s).
2020
Author(s)