Lead oxide (PbO) is an important semiconductor material, and it can be potentially applied in many industries such as glass, battery and electronic industry. Metal nanoparticles are commonly synthesized by chemical and physical methods. However, these methods require extreme conditions, and thus causing toxic compounds. To overcome these problems, biological method for synthesis has been developed because it is more environmentally-friendly process. The objective of this research was to synthesize and characterize PbO nanoparticles (PbO-NPs) using aqueous fruit extract of Averrhoa bilimbi Linn. The metal nanoparticles were investigated for the morphological characteristics and chemical composition by scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), and were identified by X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR). The XRD pattern and FTIR spectrum substantiated that the metal nanoparticles were lead oxide. It was found that the aqueous fruit extract of A. bilimbi can synthesized PbO-NPs. Therefore, this method can be a promising alternative for low cost and non-polluting production of PbO-NPs.

1.
N. A. H.
Nguyen
,
V.V. T.
Padil
, V. I. S,
M.
Černík
and
A.
Ševců
,
Nanoscale Res. Lett.
13
,
159
(
2018
).
2.
R.S. R
Isaac
,
G.
Sakthivel
, and
Ch.
Murthy
,
J. Nanotechnol.
906592
(
2013
).
3.
N.
Jayaprakash
,
J. J.
Vijaya
,
K.
Kaviyarasu
,
K.
Kombaiah
,
L. J.
Kennedy
,
R. J.
Ramalingam
,
M. A.
Munusamy
and
H. A.
Al-Lohedan
,
J. Photochem. Photobiol. B
169
,
178
185
(
2017
).
4.
A.
Miri
,
M.
Sarani
,
A.
Hashemzadeh
,
Z.
Mardani
and
M.
Darroudi
,
Green Chem. Lett.
11
,
567
572
(
2018
).
5.
B. B.
Mathew
and
N. B.
Krishnamurthy
,
J. Nanomed. Res.
7
,
198
198
(
2018
).
6.
L.
Sintubin
,
W.
Verstraete
and
N.
Boon
,
Biotechnol. Bioeng.
109
,
2422
1436
(
2012
).
7.
M. M.
Priya
,
B. K.
Selvi
,
J. A. J.
Paul
,
Dig. J. Nanomater. Biostruct.
6
,
869
877
(
2011
).
8.
S. B.
Kurup
and
S.
Mini
,
J Food Drug Anal.
25
,
360
368
(
2017
).
9.
A. M.
Alhassan
and
Q. U.
Ahmed
,
J. Pharm. Bioallied Sci.
8
,
265
271
(
2016
).
10.
H. I.
Zulhaimi
,
I. R.
Rosli
,
K. F.
Kasim
,
H. M.
Akmal
,
M. A.
Nuradibah
, and
S. T.
Sam
,
AIP Conference Proceedings
1885
,
020178
(
2017
).
11.
G.
Lakshmanan
,
A.
Sathiyaseelan
,
P.T.
Kalaichelvan
,
K.
Murugesan
,
Karbala Int. J. Mod. Sci.
4
,
61
68
(
2018
).
12.
B.B.
Matthew
and
N.B.
Krishnamurthy
,
J. Nanomed. Res.
7
,
195
198
(
2018
).
13.
T.
Sutjaritvorakul
and
S.
Chutipaijit
,
Journal of Metals, Materials and Minerals
28
,
41
46
(
2018
).
14.
J.
Markus
,
D.
Wang
,
Y.J.
Kim
,
S.
Ahn
,
R.
Mathiyalagan
,
C.
Wang
and
D.C
Yang
,
Nanoscale Res. Lett.
12
,
46
(
2017
).
15.
Y.
Azizian-Kalandaragh
,
J. Semicond. Tech. Sci.
18
,
91
99
(
2018
).
16.
A.
Güngör
,
R.
Genç
and
T.
Özdemir
,
J. Turkish Chem. Soc. Sect A: Chem
4
,
1017
1030
(
2017
).
17.
A.
Zhang
,
J.
Li
,
S.
Zhang
,
Y.
Mu
,
W.
Zhang
and
J.
Li
,
RSC Adv.
7
,
35135
35146
(
2017
).
18.
M. E.
Essington
.
Soil and Water Chemistry: An Integrative Approach
. (
CRC Press
,
Boca Raton
,
2003
).
19.
I.R.
Rosl
,
H.I.
Zulhaimi
,
S.K.M.
Ibrahim
,
S.C.B.
Gopinath
,
K. F.
Kasim
,
H.M.
Akmal
,
M.A.
Nuradibah
and
S.T.
Sam
,
IOP conf. ser., Mater. sci. eng.
318
,
012012
(
2018
).
20.
R.
Ramanarayanan
,
N.M.
Bhabhina
,
M.V.
Dharsana
,
C.V.
Nivedita
and
S.
Sindhu
,
Mater. Today: Proceedings
5
,
16472
16477
(
2018
).
21.
A. J.
Kurian
,
G.
Geetha
and
B.S.
Thavamani
,
Asian J. Chem. Sci.
5
,
1
8
(
2018
).
22.
A. T.
Khalil
,
M.
Ovais
,
I.
Ullah
,
M.
Ali
,
S. A.
Jan
,
Z. K.
Shinwari
and
M.
Maaza
,
Arab. J. Chem.
13
,
916
931
(
2020
).
This content is only available via PDF.