In this paper, we find energy, Laplacian energy and signless Laplacian energy of a complete graph when perturbed by adding some vertices and edges.

1.
K.C.
Das
,
S.A.
Mojallal
,
Relation between signless Laplacian energy, energy of a graph and its line graph.
Linear Algebra Appl.
493
,
91
107
(
2016
).
2.
I.
Gutman
,
The Energy of a Graph.
Ber. Math. Sat. Sekt. Forschungsz. Graz
,
103
,
1
22
(
1978
).
3.
H.A.
Ganie
,
S.
Pirzada
,
On the bounds for signless Laplacian energy of a graph.
Discrete Appl. Math.
228
(
10
),
3
13
(
2015
).
4.
H.A.
Ganie
,
S.
Pirzada
,
E.T.
Baskoro
,
On energy, Laplacian energy and p-fold graphs, Electron.
J. Graph Theory Appl.
3
(
1
),
94
107
(
2015
).
5.
H.A.
Ganie
,
B.A.
Chat
and
S.
Pirzada
,
signless Laplacian energy of a graph and energy of a line graph.
Linear Algebra and its Applications
544
,
306
324
(
2018
).
6.
Ji-Ming
Guo
,
The Laplacian spectral radius of a Graph under perturbation.
An International Journal Compters and Mathematics with Applications
54
,
709
720
(
2007
).
7.
Kinkar Ch.
Das
and
Seyed Ahmad
Mojablal
,
On Laplacian Energy of Graphs.
Discrete Mathematics
325
,
52
64
(
2014
).
8.
S.
Pirzada
,
H.A.
Ganie
,
On the Laplacian eigenvalues of a graph and Laplacian energy.
Linear Algebra Appl.
486
,
454
468
(
2015
).
9.
R.
Venkatesan
,
P.
Elakkiya
and
D. Rini
Dominic
,
The eigenvalues of a graph under edge operations.
AIP Conference Proceedings
2112
,
020137
(
2019
).
This content is only available via PDF.