The large mechanical energy storage capacity of metal-organic frameworks (MOFs) has suggested their promising potential as shock protective armor materials. Here, we performed shock compression of MOF (ZIF-8) film to understand the shock attenuation mechanisms in MOFs and evaluate the shock absorption efficiency. The shock wave was generated from the impact of an aluminum flyer plate on ZIF-8 film on a table-top shock apparatus. We recovered the ZIF-8 crystal film after shock compression for post-mortem analysis. We found out that the shock wave was absorbed by MOFs through powder compaction, nanopore-collapse, and chemical bond-breakage that were activated at distinct shock energies. The energy profiles obtained from photon Doppler velocimetry shows that ZIF-8 films are more efficient than PMMA (polymethyl methacrylate) in shock wave energy absorption.

1.
G.
Walter
, U.S. Patent No. 2, 356, 456 (
1944
).
2.
D. R.
Curran
,
Journal of Applied Physics
34
,
2677
2685
(
1963
).
3.
K.
Kitagawa
,
M.
Yasuhara
and
K.
Takayama
,
Shock Waves
15
,
437
445
(
2006
).
4.
J.-H.
Lee
,
P. E.
Loya
,
J.
Lou
and
E. L.
Thomas
,
Science
346
,
1092
(
2014
).
5.
Y.-R.
Miao
,
Z.
Su
and
K. S.
Suslick
,
Journal of the American Chemical Society
139
,
4667
4670
(
2017
).
6.
G.
Ortiz
,
H.
Nouali
,
C.
Marichal
,
G.
Chaplais
and
J.
Patarin
,
Physical Chemistry Chemical Physics
15
,
4888
4891
(
2013
).
7.
P. G.
Yot
,
L.
Vanduyfhuys
,
E.
Alvarez
,
J.
Rodriguez
,
J.-P.
Itié
,
P.
Fabry
,
N.
Guillou
,
T.
Devic
,
I.
Beurroies
and
P. L.
Llewellyn
,
Chemical science
7
,
446
450
(
2016
).
8.
T. D.
Bennett
,
J.-C.
Tan
,
Y.
Yue
,
E.
Baxter
,
C.
Ducati
,
N. J.
Terrill
,
H. H. M.
Yeung
,
Z.
Zhou
,
W.
Chen
,
S.
Henke
,
A. K.
Cheetham
and
G. N.
Greaves
,
Nature Communications
6
,
8079
(
2015
).
9.
K.
Yang
,
G.
Zhou
and
Q.
Xu
,
RSC Advances
6
,
37506
37514
(
2016
).
10.
Z.
Su
,
Y.-R.
Miao
,
S.-M.
Mao
,
G.-H.
Zhang
,
S.
Dillon
,
J. T.
Miller
and
K. S.
Suslick
,
Journal of the American Chemical Society
137
,
1750
1753
(
2015
).
11.
K. S.
Park
,
Z.
Ni
,
A. P.
Côté
,
J. Y.
Choi
,
R.
Huang
,
F. J.
Uribe-Romo
,
H. K.
Chae
,
M.
O’Keeffe
and
O. M.
Yaghi
,
Proceedings of the National Academy of Sciences
103
,
10186
(
2006
).
12.
L.
Abbud
,
A.
Talib
,
F.
Mustapha
,
H.
Tawfique
and
F.
Najim
,
International Journal of Mechanical and Materials Engineering
5
,
123
128
(
2010
).
13.
A. D.
Curtis
,
A. A.
Banishev
,
W. L.
Shaw
and
D. D.
Dlott
,
Review of Scientific Instruments
85
,
043908
(
2014
).
14.
K.
Kida
,
M.
Okita
,
K.
Fujita
,
S.
Tanaka
and
Y.
Miyake
,
CrystEngComm
15
,
1794
1801
(
2013
).
15.
J. C.
Tan
,
T. D.
Bennett
and
A. K.
Cheetham
,
Proceedings of the National Academy of Sciences
107
,
9938
(
2010
).
16.
X.
Zhou
,
Y.-R.
Miao
,
W. L.
Shaw
,
K. S.
Suslick
and
D. D.
Dlott
,
Journal of the American Chemical Society
141
,
2220
2223
(
2019
).
17.
K.
Banlusan
and
A.
Strachan
,
The Journal of Physical Chemistry C
120
,
12463
12471
(
2016
).
18.
W. L.
Shaw
,
Y.
Ren
,
J. S.
Moore
and
D. D.
Dlott
,
AIP Conference Proceedings
1793
,
030026
(
2017
).
19.
S. P.
Marsh
,
LASL shock Hugoniot data
(
Univ of California Press
,
1980
).
This content is only available via PDF.