We discuss major challenges in modeling giant impacts between planetary bodies, focusing on the equations of state (EOS). During the giant impact stage of planet formation, rocky planets are melted and partially vaporized. However, most EOS models fail to reproduce experimental constraints on the thermodynamic properties of the major minerals over the required phase space. Here, we present an updated version of the widely-used ANEOS model that includes a user-defined heat capacity limit in the thermal free energy term. Our revised model for forsterite (Mg2SiO4), a common proxy for the mantles of rocky planets, provides a better fit to material data over most of the phase space of giant impacts. We discuss the limitations of this model and the Tillotson equation of state, a commonly used alternative model.

1.
R. M.
Canup
, “
Accretion of the Earth
,”
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
366
,
4061
4075
(
2008
).
2.
M.
Nakajima
and
D. J.
Stevenson
, “
Investigation of the initial state of the Moon-forming disk: Bridging SPH simulations and hydrostatic models
,”
Icarus
233
,
259
267
(
2014
).
3.
S. J.
Lock
and
S. T.
Stewart
, “
The structure of terrestrial bodies: Impact heating, corotation limits, and synestias
,”
Journal of Geophysical Research: Planets
122
,
950
982
(
2017
).
4.
S.
Stewart
,
S.
Lock
, and
R.
Caracas
, “
Raining a magma ocean: Thermodynamics of rocky planets after giant impacts
,” in
49th Lunar and Planetary Science Conference
(
2018
) p.
1708
.
5.
H. J.
Melosh
, “
A hydrocode equation of state for SiO2
,”
Meteoritics & Planetary Science
42
,
2079
2098
(
2007
).
6.
S. L.
Thompson
, “Improvements in the Chart D radiation-hydrodynamic CODE I: Analytic equations of state,”
Tech. Rep. SC-RR-70-28
(
Sandia Labs
.,
Albuquerque, NM
,
1970
).
7.
S. L.
Thompson
and
H. S.
Lauson
, “Improvements in the Chart D radiation-hydrodynamic CODE III: Revised analytic equations of state,”
Tech. Rep. SC-RR–71-0714
(
Sandia Labs
.,
Albuquerque, NM
,
1974
).
8.
S. L.
Thompson
, “ANEOS analytic equations of state for shock physics codes input manual,”
Tech. Rep. SAND89-2951
(
Sandia National Labs
.,
Albuquerque, NM
,
1990
).
9.
G. S.
Collins
and
H. J.
Melosh
, “
Improvements to ANEOS for multiple phase transitions
,” in
45th Lunar and Planetary Science Conference
(
2014
) p.
2664
.
10.
J.
Stebbins
,
I.
Carmichael
, and
L.
Moret
, “
Heat capacities and entropies of silicate liquids and glasses
,”
Contributions to mineralogy and petrology
86
,
131
148
(
1984
).
11.
C. E.
Lesher
and
F. J.
Spera
, “Thermodynamic and transport properties of silicate melts and magma,” in
The Encyclopedia of Volcanoes
(
Elsevier
,
2015
) pp.
113
141
.
12.
C. W.
Thomas
and
P. D.
Asimow
, “
Direct shock compression experiments on premolten forsterite and progress toward a consistent high-pressure equation of state for CaO-MgO-Al2O3-SiO2-FeO liquids
,”
Journal of Geophysical Research: Solid Earth
118
,
5738
5752
(
2013
).
13.
S.
Root
,
J. P.
Townsend
,
E.
Davies
,
R. W.
Lemke
,
D. E.
Bliss
,
D. E.
Fratanduono
,
R. G.
Kraus
,
M.
Millot
,
D. K.
Spaulding
,
L.
Shulenburger
,
S. T.
Stewart
, and
S. B.
Jacobsen
, “
The principal Hugoniot of forsterite to 950 GPa
,”
Geophysical Research Letters
45
,
3865
3872
(
2018
).
14.
D. G.
Hicks
,
T. R.
Boehly
,
J. H.
Eggert
,
J. E.
Miller
,
P. M.
Celliers
, and
G. W.
Collins
, “
Dissociation of liquid silica at high pressures and temperatures
,”
Physical Review Letters
97
,
3
6
(
2006
).
15.
R. G.
Kraus
,
S. T.
Stewart
,
D. C.
Swift
,
C. A.
Bolme
,
R. F.
Smith
,
S.
Hamel
,
B. D.
Hammel
,
D. K.
Spaulding
,
D. G.
Hicks
,
J. H.
Eggert
, and
G. W.
Collins
, “
Shock vaporization of silica and the thermodynamics of planetary impact events
,”
Journal of Geophysical Research: Planets
117
,
E09009
(
2012
).
16.
E. J.
Davies
,
P. J.
Carter
,
S.
Root
,
R. G.
Kraus
,
D. K.
Spaulding
,
S. T.
Stewart
, and
S. B.
Jacobsen
, “
Silicate Melting and Vaporization during Rocky Planet Formation
,”
J. Geophys. Res. Planets
, submitted (
2019
).
17.
J. H.
Tillotson
, “Metallic equations of state for hypervelocity impact,”
Tech. Rep. GA-3216
(
General Dynamics
,
San Diego, CA
,
1962
).
18.
A. L.
Brundage
, “
Implementation of Tillotson equation of state for hypervelocity impact of metals, geologic materials, and liquids
,”
Procedia Engineering
58
,
461
470
(
2013
).
19.
D.
Bolmatov
,
V.
Brazhkin
, and
K.
Trachenko
, “
The phonon theory of liquid thermodynamics
,”
Scientific Reports
2
,
421
(
2012
).
20.
M.
Ćuk
and
S. T.
Stewart
, “
Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning
,”
Science
338
,
1047
1052
(
2012
).
21.
R.
Canup
,
A.
Barr
, and
D.
Crawford
, “
Lunar-forming impacts: high-resolution SPH and AMR-CTH simulations
,”
Icarus
222
,
200
219
(
2013
).
22.
M. M.
Marinova
,
O.
Aharonson
, and
E.
Asphaug
, “
Geophysical consequences of planetary-scale impacts into a Mars-like planet
,”
Icarus
211
,
960
985
(
2011
).
23.
J. L.
Mosenfelder
,
P. D.
Asimow
, and
T. J.
Ahrens
, “
Thermodynamic properties of Mg2SiO4 liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite
,”
Journal of Geophysical Research: Solid Earth
112
,
B06208
(
2007
).
24.
P.
Gillet
,
P.
Richet
,
F.
Guyot
, and
G.
Fiquet
, “
High-temperature thermodynamic properties of forsterite
,”
Journal of Geophysical Research: Solid Earth
96
,
11805
11816
(
1991
).
25.
R. A.
Marcus
,
The role of giant impacts in planet formation and internal structure
, Ph.D. thesis,
Harvard University
(
2011
).
26.
R. M.
Canup
, “
Forming a moon with an earth-like composition via a giant impact
,”
Science
338
,
1052
1055
(
2012
).
27.
A. C.
Barr
, “
On the origin of Earth’s Moon
,”
Journal of Geophysical Research: Planets
121
,
1573
1601
(
2016
).
28.
W.
Benz
,
A.
Cameron
, and
H.
Melosh
, “
The origin of the Moon and the single-impact hypothesis III
,”
Icarus
81
,
113
131
(
1989
).
29.
E.
Davies
,
M.
Duncan
,
S.
Stewart
,
D.
Spaulding
,
S.
Root
,
D.
Bliss
,
R.
Kraus
, and
S.
Jacobsen
, “
Forsterite shock-and-release: Temperature and density on the liquid-vapor curve
,”
Bulletin of the American Physical Society
64
,
S6
00003
(
2019
).
30.
T.
Mattsson
,
G.
Shohet
,
J.
Townsend
,
L.
Shulenburger
, and
M.
Desjarlais
, “
Critical point, liquid-vapor coexistence, and melting of Mg2SiO4 from ab-initio simulations
,”
Bulletin of the American Physical Society
64
,
C17
00003
(
2019
).
31.
N.
Hosono
,
S.-i.
Karato
,
J.
Makino
, and
T. R.
Saitoh
, “
Terrestrial magma ocean origin of the Moon
,”
Nature Geoscience
12
,
418
423
(
2019
).
32.
H. J.
Melosh
, Impact cratering: A geologic process,
Oxford Monographs on Geology and Geophysics
, No. 11 (
Oxford University Press
,
New York
,
1989
) p.
253
.
33.
M.
Rice
,
R. G.
McQueen
, and
J.
Walsh
, “Compression of solids by strong shock waves,” in
Solid State Physics
, Vol.
6
(
Elsevier
,
1958
) pp.
1
63
.
34.
S. J.
Lock
,
S. T.
Stewart
,
M. I.
Petaev
,
Z.
Leinhardt
,
M. T.
Mace
,
S. B.
Jacobsen
, and
M.
Cuk
, “
The origin of the Moon within a terrestrial synestia
,”
Journal of Geophysical Research: Planets
123
,
910
951
(
2018
).
This content is only available via PDF.