The aquarium test provides optical data on important aspects of detonation performance, namely the detonation velocity, shock wave shape in the surrounding water, and expansion rate of the condensed phase explosive products. It is commonly used for calibrating reaction rate laws and products equations of state (EOS). An important aspect, with regards to the analysis, is an adequate representation of the confining material to avoid inaccuracies. We conduct a series of two-dimensional axisymmetric reactive flow simulations for an ANFO-PMMA-water system using the Ghost Fluid Method. The goal is to evaluate the results obtained using three different EOSs for water: Tait, Murnaghan, and Tillotson. The numerical calculations are compared to large-scale aquarium experiments where the HE-water interface and the water shock front locations are directly measured from time-resolved image data.

1.
J.
Johnson
,
C.
Mader
, and
S.
Goldstein
,
Propellants, Explosives, Pyrotechnics
8
,
8
18
(
1983
).
2.
J. P.
Lu
,
H.
Dorsett
,
D. L.
Kennedy
, and
O.
Explosives
, in
Proceedings of the 12th International Detonation Symposium
(
2002
) pp.
11
16
.
3.
S. A.
Andrews
and
T.
Aslam
,
Journal of Computational Physics
395
,
653
670
(
2019
).
4.
T. D.
Aslam
and
J. B.
Bdzil
, in
Proceedings of the 12th International Detonation Symposium
(
2002
) pp.
483
488
.
5.
J.
Kirkwood
and
H.
Bethe
,
OSRD Report
588
(
1942
).
6.
F.
Murnaghan
,
Proceedings of the National Academy of Sciences of the United States of America
30
,
244
(
1944
).
7.
J. H.
Tillotson
,
GA Report No. 3216
(
1962
).
8.
A.
Wardlaw
 Jr
,
R.
McKeown
, and
A.
Luton
,
NSWC IHD Report
A363434
(
1998
).
9.
G.
Sharpe
and
M.
Braithwaite
,
Journal of Engineering Mathematics
53
,
39
58
(
2005
).
10.
R. H.
Cole
and
R.
Weller
,
Physics Today
1
,
35
(
1948
).
11.
S.
Ridah
,
Journal of Applied Physics
64
,
152
158
(
1988
).
12.
A. L.
Brundage
,
Procedia Engineering
58
,
461
470
(
2013
).
13.
A.
Brundage
,
Journal of Physics: Conference Series
,
500
(
2014
).
14.
A. B.
Wardlaw
 Jr
and
J. A.
Luton
,
Shock and Vibration
7
,
265
275
(
2000
).
15.
A.
Kapahi
,
C.-T.
Hsiao
, and
G. L.
Chahine
,
Computers & Fluids
115
,
25
45
(
2015
).
16.
S. P.
Marsh
,
LASL shock Hugoniot data
, Vol.
5
(
Univ of California Press
,
1980
).
17.
L.
Al’tshuler
,
A.
Bakanova
, and
R.
Trunin
,
Dokl. Akad. Nauk SSSR
,
121
,
67
70
(
1958
).
18.
I.
Skidmore
and
E.
Morris
, “Thermodynamics of nuclear materials,” (
IAEA
,
1962
) pp.
173
216
.
19.
R.
Trunin
,
L.
Gudarenko
,
M.
Zhernokletov
, and
G.
Simakov
,
RFNC, Sarov
(
2001
).
20.
R. P.
Fedkiw
,
T.
Aslam
,
B.
Merriman
, and
S.
Osher
,
Journal of Computational Physics
152
,
457
492
(
1999
).
21.
F.
Losasso
,
T.
Shinar
,
A.
Selle
, and
R.
Fedkiw
, in
ACM Transactions on Graphics (TOG)
, Vol.
25 (ACM
,
2006
) pp.
812
819
.
22.
B.
Craig
,
J.
Johnson
,
C.
Mader
, and
G.
Lederman
,
LA Report 1140
(
1978
).
23.
R.
Menikoff
, in
Shock Wave Science and Technology Reference Library
, Vol.
2
(
Springer
,
2007
) pp.
143
188
.
This content is only available via PDF.