There is a recognized need for a Dynamic Mesoscale Materials Science Capability (DMMSC) that enables characterization, production and control of matter in extreme conditions. Programs demanding this capability can have dramatically different requirements for instrumentation and sample environments, creating a unique challenge for experimental systems design. In order to leverage experience gained from dynamic experiments at existing facilities, input was obtained from the user community on design directions, desired functionality, and best practices. The consensus included needs ranging from accelerator developments to instrumentation advancements to improvements in facility user program processes and user experience. Presented here are brief reviews of some current facilities, expected changes due to upgrades, and a set of capabilities that the user community has identified as important to the future of high impact dynamic mesoscale materials science at user facilities.

1.
C. W.
Barnes
,
C. A.
Bronkhorst
,
J. C.
Cooley
,
D. E.
Hooks
,
A. H.
Lacerda
,
J. C.
Martz
, and
K. P.
Prestridge
(
2015
) “MaRIE 1.0 Technical Requirements - Flow Down from Campaign Experiments to Specify Capabilities Required to Meet Mission Need,”
Los Alamos National Laboratory
,
Los Alamos
, NM, LA-UR-15-27974.
2.
“Report from the Workshop on MaRIE Extreme Environments and Driver Technologies
,” August 26–27,
2017
, ed.
G. W.
Collins
and
Cris W.
Barnes
, Los Alamos Technical Report LA-UR-18-25619.
3.
Report from Adaptive Sample Preparation and Target Fabrication for High-Throughput Materials Science
”, May 14–16,
2019
,
John
Oertel
,
Cris
W. Barnes
,
Michael
Demkowicz
,
Gilliss
Dyer
,
Mike
Farrell
,
Martin
Green
,
Ross
Muenchausen
,
Abbass
Nikroo
,
Irene
Prencipe
,
Los Alamos Technical Report LA-UR-19-26624
.
4.
APS Dynamic Compression Sector Website
: https://dcs-aps.wsu.edu/.
5.
Capatina
,
D.
,
K.
D’Amico
,
J.
,
Nudell
,
J.
Collins
and
O.
Schmidt
(
2016
). “
DCS–A High Flux Beamline for Time Resolved Dynamic Compression Science–Design Highlights
.”
American Institute of Physics Conference Proceeding
1741
,
030036
.
6.
Wang
,
X.
,
P.
Rigg
,
J.
Sethian
,
N.
Sinclair
,
N.
Weir
,
B.
Williams
,
J.
Zhang
,
J. A.
Hawreliak
,
Y.
Toyoda
,
Y. M.
Gupta
,
Y.
Li
,
D.
Broege
,
J.
Bromage
,
R.
Earley
,
D.
Guy
, and
J.
Zuegel
(
2019
). “
The Laser Shock Station in the Dynamic Compression Sector
.”
Review of Scientific Instruments
,
90
(
5
):
053901
.
7.
Advanced Photon Source Upgrade Project Preliminary Design Report APSU-2.01-RPT-002 (
2017
),
Argonne National Laboratory
,
Lemont, IL
.
8.
B.
Nagler
,
B.
Arnold
,
G.
Bouchard
,
R. F.
Boyce
,
R. M.
Boyce
,
A.
Callen
,
M.
Campell
,
R.
Curiel
,
E.
Galtier
,
J.
Garofoli
,
E.
Granados
,
J.
Hastings
,
G.
Hays
,
P.
Heimann
,
R. W.
Lee
,
D.
Milathianaki
,
L.
Plummer
,
A.
Schropp
,
A.
Wallace
,
M.
Welch
,
W.
White
,
Z.
Xing
,
J.
Yin
,
J.
Young
,
U.
Zastrau
and
H. J.
Lee
(
2015
)
The Matter in Extreme Conditions instrument at the Linac Coherent Light Source
,
J. Synchrotron Rad.
22
,
520
525
.
10.
LaserNetUS Website
: https://www.lasernetus.org/.
11.
M.
Dunne
, LCLS Strategic Facility Development Plan (
2018
),
SLAC National Accelerator Laboratory
,
Menlo Park, CA
.
12.
C.
Rousculp
,
W.
Reass
,
D.
Oró
,
J.
Griego
,
P.
Turchi
,
R.
Reinovsky
(
2013
). “
Update on PHELIX pulsed-power hydrodynamics experiments and modeling
.” In
Proceedings of the 2013 19ᵗʰ IEEE Pulsed Power Conference (PPC
),
San Francisco
, June 2013.
13.
K. E.
Kippen
,
R. D.
Fulton
,
E.
Brown
,
W. T.
Butler
,
A. J.
Clarke
,
K. K.
Kwiatkowscki
,
F. G.
Mariam
,
F. E.
Merrill
,
C.
Morris
,
R. T.
Olson
, and
M.
Zellner
(
2013
) AOT & LANSCE Focus: Proton Radiography Facility,
Los Alamos National Laboratory
,
Los Alamos, NM
.
This content is only available via PDF.