There are two methods of determining shelf life of a product; direct and indirect methods. The direct method requires product to be under real conditions for a period of time while indirect method predict the shelf life under accelerated temperature with short period of time. As for indirect method, Arrhenius model has normally applied with few approaches to extrapolate the model; including an approach called Average Activation Energy. In this study, the sago starch filled natural rubber latex (SSNRL) gloves which is formulated to reduce solid waste disposal problem is subjected to different accelerated ageing temperatures of 50 to 80°C in between 1 to 120 days. It is important to conduct this study as a significant modification in product formulation requires comprehensive studies of product shelf life. Results showed the estimated shelf life of SSNRL gloves to retain 50% of the tensile strength at shelf temperature (30°C) was around 7.99 years.

1.
C.D.
Anderson
and
E.S.
Daniels
,
Emulsion Polymerisation and Application of Latex
(
Rapra Technology Limited
,
United Kingdom
,
2003
), p.
27
.
3.
A.S.S.
Nuraya
,
A.
Baharin
,
A.R.
Azura
,
M.H.
Hakim
,
I.
Mazlan
,
M.
Adnan
and
A.A.
Nooraziah
,
J Rubber Res
15
(
2
),
124
140
(
2012
).
4.
E.
Abraham
,
P.A.
Elbi
,
B.
Deepa
,
P.
Jyotishkumar
,
L.A.
Pothen
,
S.S.
Narine
and
S.
Thomas
,
Polym Degrad Stabil
97
(
11
),
2378
2387
(
2012
).
5.
S.
Norhazariah
,
A.R.
Azura
,
R.
Sivakumar
, and
B.
Azahari
,
Procedia Chem
19
,
986
992
(
2016
).
6.
A.
Ramírez-Hernández
,
A.
Aparicio-Saguilán
,
G.
Reynoso-Meza
, and
J.
Carrillo-Ahumada
,
Carbohydr Polym
157
,
1125
1133
(
2017
).
7.
W.
Sanwahong
,
P.
Banhalee
,
S.
Boonsang
, and
S.
Kaewpirom
,
Ind Crops Prod
108
,
656
766
(
2017
).
8.
A.A.
Karim
,
A.P.L
Tie
,
D.M.A.
Manan
and
I.S.M.
Zaidul
,
Compr Rev Food Sci Food Saf
7
,
215
228
(
2008
).
9.
K.S.
Cheong
,
J.R.
Balasubramaniam
,
Y.P.
Hung
,
W.S.
Chuong
and
R.
Amartalingam
,
Pertanika J Sci Technol
18
(
2
),
411
420
(
2010
).
10.
K.R.
Rajisha
,
H.J.
Maria
,
L.A.
Pothan
,
Z.
Ahmad
and
S.
Thomas
,
Int J Biol Macromol
67
,
147
153
(
2014
).
11.
M.A.
Misman
,
A.R.
Azura
, and
Z.A.A.
Hamid
,
Ind Crops Prod
65
,
397
405
(
2015
).
12.
A.
Linos
and
A.
Steinbüchel
, “Biodegradation of Natural and Synthetic Rubbers”, in
Biopolymers Online: Biology• Chemistry• Biotechnology• Applications
, edited by
A.
Steinbüchel
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
2005
).
13.
C.
Datta
, “Starch as a Biopolymer in Construction and Civil Engineering”, in
Handbook of Bioplastics and Biocomposites Engineering Applications
, edited by
S.
Pilla
(
Scrivener Publishing LLC
,
2011
).
14.
E.
Gregorová
,
W.
Pabst
and
I.
Bohačenko
,
J Eur Ceram Soc
26
(
8
),
1301
1309
(
2006
).
15.
C.
Dwivedi
,
K.
Rajkumar
,
M.
Vibhande
,
N.
Shinde
, and
S.
Sankhe
,
Int J Adv Res Eng Technol
5
(
11
),
46
60
(
2014
).
16.
ASTM D7160-16, Standard Practice for Determination of Expiration Dating for Medical Gloves
,
ASTM International
,
West Conshohocken, PA
,
2016
.
17.
M.M.
Afiq
and
A.A.
Rashid
,
J Chem Chem Eng
7
(
2
),
137
144
(
2013
).
18.
ASTM D573-04(2015)
,
Standard Test Method for Rubber—Deterioration in an Air Oven
,
ASTM International
,
West Conshohocken, PA
,
2015
.
19.
ASTM D412-16
,
Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension
,
ASTM International
,
West Conshohocken, PA
,
2016
.
20.
S.S
Das
, and
L.W.
Schroeder
,
J Biomed Mater Res B
85
(
2
),
398
408
(
2008
).
This content is only available via PDF.