In this note, we consider a supersingular integral equations (SuperSIEs) of the first kind on the interval [−1,1] with the assumption that kernel of the hypersingular integral is constant on the diagonal of the domain D = [−1,1]×[−1,1] . Projection method together with Chebyshev polynomials of the first, second, third and fourth kinds are used to find bounded, unbounded and semi-bounded solutions of SuperSIEs respectively. Exact calculations of singular integrals for Chebyshev polynomials allow us to obtain high accurate approximate solution. Gauss- Chebyshev quadrature formulas are used for high accurate computations of regular kernel integrals. Two examples are provided to verify the validity and accuracy of the proposed method. Comparisons with other methods are also given. Numerical examples reveal that approximate solutions are exact if solution of SuperSIEs is of the polynomial forms with corresponding weights. It is worth to note that proposed method works well for large value of node points and errors are drastically decreases.

1.
M.A.
Abdou
,
Appl. Math. Comput.
137
,
231
243
(
2003
).
2.
J.H.
de Klerk
,
Appl. Math. Comput.
127
,
311
326
(
2002
).
3.
M.S.
Akel
,
H.S.
Hussein
,
Appl. Math. Comput.
218
,
3565
3573
(
2011
).
4.
Y.T.
Zhou
,
J.
Li
,
D.H.
Yu
,
K.Y.
Lee
,
Appl. Math. Comput.
217
, pp.
861
868
(
2010
).
5.
M.A.
Golberg
(1985),
J. Integral Equations and Its Applications.
9
(
3
),
267
275
(
1985
).
6.
P.A.
Martin
,
J Integral Equ Appl
,
4
(
2
),
197
204
(
1992
).
7.
M. R.
Capobianco
,
G.
Criscuolo
,
P.
Junghanns
,
U.
Luther
,
ANZIAM J.
,
42
,
151
168
(
2000
).
8.
I.K.
Lifanov
and
L.N.
Poltavskii
,
Differential Equations
,
39
,(
9
),
1316
1331
(
2003
).
9.
B.N.
Mandal
,
S.
Bhattacharya
,
Appl. Math. Comput
,
190
,
1707
1716
, (
2007
).
10.
N.M.A. Nik
Long
,
Z.K.
Eshkuvatov
.
Int. J. Solids Struct.
46
(
13
),
2611
2617
(
2009
).
11.
M.
Abdulkawi
,
N.M.A. Nik
Long
,
Z. K.
Eshkuvatov
.
Int J. Pure Appl. Math
,
69
(
3
),
265
274
(
2011
).
12.
S. M.
Dardery
,
M. M.
Allan
,
Applied Mathematics.
5
,
753
764
(
2014
).
13.
R.
Novin
,
M. A. F.
Araghi
.
Journal of Low Frequency Noise, Vibration and Active Control.
38
(
2
),
706
727
(
2019
).
14.
J.C.
Mason
and
D.C.
Handscomb
.
Chebyshev polynomials
,
CRC Press LLC
.
2003
.
15.
P.K.
Kythe
Handbook of Computational Methods for Integration
.
Chapman, Hall/
CRC
.
2005
.
16.
S.
Ahdiaghdam
,
Computational Methods for Differential Equations.
6
(
4
),
411
425
(
2018
).
17.
Z.K.
Eshkuvatov
,
Anvar Narzullaev, Indian Journal of Industrial and Applied Mathematics (IJIAM)
.
10
(
1
),
11
37
(
2019
).
This content is only available via PDF.