In this study, Nickel nanoparticles/reduced graphene oxide was successfully prepared through an in-situ hydrothermal process by applying graphene oxide as a precursor that was applied as a catalyst for converting CO2 into CH4. NiNPs/rGO were characterized using UV-Vis spectrophotometer, Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy-Dispersive X-Ray Spectroscopy (EDS). The characterization of the UV-Vis spectrophotometer shows NiNPs/rGO gave absorption at 260 nm which indicates red shifting from GO absorption peak (230 nm). FTIR spectra of NiNPs/rGO shows a decreasing in absorbance from the peaks of the oxygen-containing group (i.e. carboxylic and hydroxyl group) previously contained in the GO, moreover disappearance of the absorption peak at 1736 cm−1 (C=O) in NiNPs/rGO also indicates that reduction process from GO into rGO has been successfully carried out. The construction of Nickel nanoparticles on the surface of the rGO was proven from the results of EDX (% mass) shows the presence of C (21.84 %), O (5.58 %), and Ni (72.58 %) on the surface of NiNPs (30 %)/rGO. In its application as catalysts, the NiNPs (30 %)/rGO catalysts have shown a good activity in the process of CO2 methanation (i.e. CO2 conversion into CH4). Initial catalytic test had been done to evaluate the effect of reaction temperature on CO2 methanation using NiNPs (30 %)/rGO as catalyst. The catalytic test result shows that catalys could produce methane as the main product with highest value of 17.63 % at 673 K.

1.
K.
Narasimharao
,
G. V.
Ramana
,
D.
Sreedhar
and
V.
Vasudevarao
,
J. Mater. Sci. Eng.
5
,
1
4
(
2016
).
2.
M.
Chakraborty
and
M. S. J.
Hashmi
, “Graphene as a Material–An Overview of Its Properties and Characteristics and Development Potential for Practical Applications,” in
Reference Module in Materials Science and Materials Engineering
(
Elsevier Ltd.
,
2018
).
3.
M.
Handayani
 et al.,
IOP Conf. Ser. Mater. Sci. Eng.
578
,
012073
(
2019
).
4.
J.
Park
 et al.,
Energy Storage Mater.
14
,
8
21
(
2018
).
5.
T.
Meng
,
Q.
Xu
,
Y.
Li
,
J.
Chang
,
T.
Ren
, and
Z.
Yuan
,
J. Ind. Eng. Chem.
32
,
373
379
(
2015
).
6.
A.
Primo
 et al.,
Appl. Catal. B Environ.
245
,
351
359
(
2019
).
7.
S.
Rana
,
G. B. B.
Varadwaj
and
S. B.
Jonnalagadda
,
Nanoscale Adv.
1
,
1527
1530
(
2019
).
8.
H.
Liu
 et al.,
Appl. Surf. Sci.
317
,
370
377
(
2014
).
9.
S.
Go
 et al.,
Solid State Sci.
84
,
120
125
(
2018
).
10.
E.
Seker
,
N.
Yasyerli
,
E.
Gulari
,
C.
Lambert
and
R. H.
Hammerle
,
Appl. Catal. B Environ.
37
,
27
35
(
2002
).
11.
P.
Chamoli
,
M. K.
Das
and
K. K.
Kar
,
J. Phys. Chem. Solids
113
,
17
25
(
2017
).
12.
Y.
Jiang
,
T.
Huang
,
L.
Dong
,
Z.
Qin
and
H.
Ji
,
Chinese J. Chem. Eng.
26
,
2361
2367
(
2018
).
13.
W.
Gac
,
W.
Zawadzki
,
G.
Słowik
,
A.
Sienkiewicz
and
A.
Kierys
,
Microporous Mesoporous Mater.
272
,
79
91
(
2018
).
14.
W.
Wang
,
S.
Wang
,
X.
Ma
and
J.
Gong
,
Chem. Soc. Rev.
40
,
3703
3727
(
2011
).
15.
K.
Stangeland
,
D.
Kalai
,
H.
Li
and
Z.
Yu
,
Energy Procedia
105
,
2022
2027
(
2017
).
16.
T. A.
Le
,
M. S.
Kim
,
S. H.
Lee
,
T. W.
Kim
and
E. D.
Park
,
Catal. Today
293-294
,
89
96
(
2017
).
17.
M.
Handayani
 et al.,
IOP Conf. Ser. Mater. Sci. Eng.
541
,
012032
(
2019
).
18.
Z.
Lei
,
L.
Lu
and
X. S.
Zhao
,
Energy Environ. Sci.
5
,
6391
6399
(
2012
).
19.
A.
Al-Nafiey
 et al.,
J. Photochem. Photobiol. A Chem.
336
,
198
207
(
2017
).
20.
N. R. N.
Roselina
and
A.
Azizan
,
Procedia Eng.
41
,
1620
1626
(
2012
).
21.
M.
Younas
 et al.,
Energy and Fuels
30
,
8815
8831
(
2016
).
This content is only available via PDF.