Non-local communication between position-based qubits is described for a system of a quantum electromagnetic resonator entangled to two semiconductor electrostatic qubits via an interaction between matter and radiation by Jaynes-Cummings tight-binding Hamiltonian. Principle of quantum communication between position-dependent qubits is explained. Further prospects of the model development are given. The obtained results bring foundation for the construction of quantum internet and quantum communication networks between position-based qubits that are implementable in semiconductor single-electron devices that can be realized in current CMOS technologies. The case of two semiconductor position-dependent qubits interacting with quantum electromagnetic cavity is discussed and general form of tight-binding Hamiltonian is derived with renormalized tight-binding coefficients. The considerations also describe the situation of mutual qubit-qubit electrostatic interaction.

1.
I.
Bashir
,
M.
Asker
,
C.
Cetintepe
,
D.
Leipold
,
A.
Esmailiyan
,
H.
Wang
,
T.
Siriburanon
,
P.
Giounanlis
,
E.
Blokhina
,
K.
Pomorski
, and
R. B.
Staszewski
, “
A mixed-signal control core for a fully integrated semiconductor quantum computer system-on-chip
,”
Proc. of IEEE European Solid-State Circuits Conf. (ESSCIRC)
, sec. A2L-C4, pp.
125
128
, 24 Sept.
2019
.
2.
T.
Fujisawa
,
T.
Hayashi
,
HD
Cheong
,
YH
Jeong
, and
Y.
Hirayama
.
Rotation and phase-shift operations for a charge qubit in a double quantum dot
.
Physica E: Low-dimensional Systems and Nanostructures
,
21
(
2-4
):
10461052
,
2004
.
3.
K. D.
Petersson
,
J. R.
Petta
,
H.
Lu
, and
A. C.
Gossard
.
Quantum coherence in a one-electron semiconductor charge qubit
.
Phys. Rev. Lett.
,
105
:
246804
,
2010
.
4.
D.
Leipold
,
Controlled Rabi Oscillations as foundation for entangled quantum aperture logic
,
Seminar at UC Berkley Quantum Labs
, 25th July
2018
.
5.
P.
Giounanlis
,
E.
Blokhina
,
K.
Pomorski
,
D.R.
Leipold
,
R.B.
Staszewski
,
Modeling of Semiconductor Electrostatic Qubits Realized Through Coupled Quantum Dots
, , IEEE Access,
2019
6.
K.
Pomorski
,
P.
Giounanlis
,
E.
Blokhina
,
D.
Leipold
,
P.
Peczkowski
,
R.B.
Staszewski
,
From two types of electrostatic position-dependent semi-conductor qubits to quantum universal gates and hybrid semiconductor-superconducting quantum computer
,
Proc. SPIE 11054, Superconductivity and Particle Accelerators
2018
,
110540M
,
2019
.
7.
J.
Spalek
,
Wstep do fizyki materii skondensowanej
,
PWN
,
2015
.
8.
E. T.
Jaynes
, and
F. W.
Cummings
,
Proc. IEEE
51
,
89
(
1963
).
9.
D.G.
Angelakis
,
S.
Mancini
,
S.
Bose
,
Steady state entanglement between hybrid light-matter qubits
, arXiv:0711.1830,
2008
.
10.
K.
Pomorski
,
H.
Akaike
,
A.
Fujimaki
, and
K.
Rusek
.
Relaxation method in description of ram memory cell in rsfq computer
,
COMPEL
,
38
(
1
):
395414
,
2019
.
11.
M.S.
Choi
,
J.
Yi
,
M.Y.
Choi
,
J.
Choi
, and
S.I.
Lee
.
Quantum phase transitions in josephson-junction chains
.
Phys. Rev. B
,
57
:
R716R719
,
1998
.
12.
S.
Sachdev
.
Quantum phase transitions
.
Cambridge Univ. Press
,
2011
.
13.
H. Q.
Xu
.
Method of calculations for electron transport in multiterminal quantum systems based on real-space lattice models
.
Phys. Rev. B
,
66
:
165305
.
14.
D.
Maile
,
S.
Andergassen
, and
W.
Belzig
.
Quantum phase transition with dissipative frustration
.
Phys. Rev. B
,
97
,
2018
.
15.
K.
Pomorski
,
P.
Prokopow
,
Possible existence of field-induced Josephson junctions
, Vol.
249
, No.
9
,
Physica Status Solidi B
,
2012
16.
K.
Pomorski
,
P.
Giounanlis
,
E.
Blokhina
,
D.
Leipold
,
P.
Peczkowski
,
R.B.
Staszewski
,
Analytic view on Coupled Single-Electron Lines
,
Semi-conductor Science and Technology
, Vol.
34
, Nr
12
,
2019
.
17.
C.
Wetterich
,
Quantum mechanics from classical statistics
, Arxiv:0906.4919
18.
John C.
Baez
and
Blake S.
Pollard
,
Quantropy
, http://math.ucr.edu/home/baez/quantropy.pdf
19.
K.
Pomorski
,
R.B.
Staszewski
,
Analytical Solutions for N-Electron Interacting System Confined in Graph of Coupled Electrostatic Semicon-ductor and Superconducting Quantum Dots in Tight-Binding Model with Focus on Quantum Information Processing
, Arxiv:1907.03180,
2019
.
20.
F.
Wilczek
,
Quantum Time Crystals
,
Phys. Rev. Lett.
109
,
2012
21.
K.
Sacha
,
J.
Zakrzewski
,
Time crystals: a review
,
Reports on Progress in Physics
, Volume
81
, Number
1
,
2017
22.
I.
Bialynicki-Birula
,
On the wavefunction of the photon
, Vol.
86
,
Acta Physical Polonica A
, No.
1-2
,
Proceedings of the International Conference "Quantum Optics III"
,
Szczyrk, Poland
,
1993
This content is only available via PDF.