We analyze the energy spectrum of the three-site Bose-Hubbard model. It is shown that this spectrum is a mixture of the regular and irregular spectra associated with the regular and chaotic components of the classical Bose-Hubbard model. We find relative volumes of these components by using the pseudoclassical approach. Substituting these values in the Berry-Robnik distribution for the level spacing statistics we obtain good agreement with the numerical data.
REFERENCES
1.
H.
Gersch
and G.
Knollman
, “Quantum cell model for bosons
,” Physical Review
129
, 959
(1963
).2.
D.
Jaksch
, C.
Bruder
, J. I.
Cirac
, C. W.
Gardiner
, and P.
Zoller
, “Cold bosonic atoms in optical lattices
,” Physical Review Letters
81
, 3108
(1998
).3.
A. R.
Kolovsky
, “Bose–hubbard hamiltonian: Quantum chaos approach
,” International Journal of Modern Physics B
30
, 1630009
(2016
).4.
R.
Franzosi
and V.
Penna
, “Chaotic behavior, collective modes, and self-trapping in the dynamics of three coupled bose-einstein condensates
,” Physical Review E
67
, 046227
(2003
).5.
A. R.
Kolovsky
and A.
Buchleitner
, “Quantum chaos in the bose-hubbard model
,” Europhysics Letters (EPL)
68
, 632
–638
(2004
).6.
S.
Mossmann
and C.
Jung
, “Semiclassical approach to bose-einstein condensates in a triple well potential
,” Physical Review A
74
, 033601
(2006
).7.
G.
Arwas
, A.
Vardi
, and D.
Cohen
, “Superfluidity and chaos in low dimensional circuits
,” Scientific reports
5
, 13433
(2015
).8.
D. V.
Makarov
and M. Y.
Uleysky
, “Chaos-assisted formation of immiscible matter-wave solitons and self-stabilization in the binary discrete nonlinear schrödinger equation
,” Communications in Nonlinear Science and Numerical Simulation
43
, 227
–238
(2017
).9.
C.
Khripkov
, A.
Vardi
, and D.
Cohen
, “Many-body dynamical localization and thermalization
,” arXiv preprint arXiv:1908.03868 (2019
).10.
R.
Franzosi
, V.
Penna
, and R.
Zecchina
, “Quantum dynamics of coupled bosonic wells within the bose–hubbard picture
,” International Journal of Modern Physics B
14
, 943
–961
(2000
).11.
M.
Albiez
, R.
Gati
, J.
Fölling
, S.
Hunsmann
, M.
Cristiani
, and M. K.
Oberthaler
, “Direct observation of tunneling and nonlinear self-trapping in a single bosonic josephson junction
,” Physical review letters
95
, 010402
(2005
).12.
R.
Gati
and M.
Oberthaler
, “A bosonic josephson junction
,” Journal of Physics B: Atomic, Molecular and Optical Physics
40
, R61
(2007
).13.
K.
Nemoto
, C.
Holmes
, G. J.
Milburn
, and W.
Munro
, “Quantum dynamics of three coupled atomic bose-einstein condensates
,” Physical Review A
63
, 013604
(2000
).14.
R.
Franzosi
and V.
Penna
, “Self-trapping mechanisms in the dynamics of three coupled bose-einstein condensates
,” Physical Review A
65
, 013601
(2001
).15.
F. M.
Cucchietti
, H. M.
Pastawski
, and R. A.
Jalabert
, “Universality of the lyapunov regime for the loschmidt echo
,” Physical Review B
70
, 035311
(2004
).16.
A.
Goussev
, R. A.
Jalabert
, H. M.
Pastawski
, and D. A.
Wisniacki
, “Loschmidt echo
,” Scholarpedia
7
, 11687
(2012
).17.
Y. A.
Kharkov
, V.
Sotskov
, A.
Karazeev
, E.
Kiktenko
, and A.
Fedorov
, “Revealing quantum chaos with machine learning
,” arXiv preprint arXiv:1902.09216 (2019
).18.
E.
Graefe
and H.
Korsch
, “Semiclassical quantization of an n-particle bose-hubbard model
,” Physical Review A
76
, 032116
(2007
).19.
A.
Richaud
and V.
Penna
, “Phase separation can be stronger than chaos
,” New Journal of Physics
20
, 105008
(2018
).20.
J.
Esteve
, C.
Gross
, A.
Weller
, S.
Giovanazzi
, and M.
Oberthaler
, “Squeezing and entanglement in a bose–einstein condensate
,” Nature
455
, 1216
(2008
).21.
T.
Zibold
, E.
Nicklas
, C.
Gross
, and M. K.
Oberthaler
, “Classical bifurcation at the transition from rabi to josephson dynamics
,” Physical review letters
105
, 204101
(2010
).22.
A.
Bychek
, D.
Maksimov
, and A.
Kolovsky
, “Noon state of bose atoms in the double-well potential via an excited-state quantum phase transition
,” Physical Review A
97
, 063624
(2018
).23.
A.
Smerzi
and A.
Trombettoni
, “Nonlinear tight-binding approximation for bose-einstein condensates in a lattice
,” Physical Review A
68
, 023613
(2003
).24.
A. R.
Kolovsky
, H. J.
Korsch
, and E.-M.
Graefe
, “Bloch oscillations of bose-einstein condensates: Quantum counterpart of dynamical insta- bility
,” Physical Review A
80
, 023617
(2009
).25.
Z.
Sándor
, B.
Érdi
, A.
Széll
, and B.
Funk
, “The relative lyapunov indicator: an efficient method of chaos detection
,” Celestial Mechanics and Dynamical Astronomy
90
, 127
–138
(2004
).26.
S.
Prants
, M.
Edelman
, and G.
Zaslavsky
, “Chaos and flights in the atom-photon interaction in cavity qed
,” Physical Review E
66
, 046222
(2002
).27.
A. R.
Kolovsky
, “Semiclassical quantization of the bogoliubov spectrum
,” Physical review letters
99
, 020401
(2007
).28.
A. R.
Kolovsky
and D. L.
Shepelyansky
, “Dynamical thermalization in isolated quantum dots and black holes
,” EPL (Europhysics Letters)
117
, 10003
(2017
).29.
A. R.
Kolovsky
, “Microscopic models of source and sink for atomtronics
,” Physical Review A
96
, 011601
(2017
).30.
F.
Borgonovi
, F. M.
Izrailev
, L. F.
Santos
, and V. G.
Zelevinsky
, “Quantum chaos and thermalization in isolated systems of interacting particles
,” Physics Reports
626
, 1
–58
(2016
).
This content is only available via PDF.
© 2020 Author(s).
2020
Author(s)