We analyze the energy spectrum of the three-site Bose-Hubbard model. It is shown that this spectrum is a mixture of the regular and irregular spectra associated with the regular and chaotic components of the classical Bose-Hubbard model. We find relative volumes of these components by using the pseudoclassical approach. Substituting these values in the Berry-Robnik distribution for the level spacing statistics we obtain good agreement with the numerical data.

1.
H.
Gersch
and
G.
Knollman
, “
Quantum cell model for bosons
,”
Physical Review
129
,
959
(
1963
).
2.
D.
Jaksch
,
C.
Bruder
,
J. I.
Cirac
,
C. W.
Gardiner
, and
P.
Zoller
, “
Cold bosonic atoms in optical lattices
,”
Physical Review Letters
81
,
3108
(
1998
).
3.
A. R.
Kolovsky
, “
Bose–hubbard hamiltonian: Quantum chaos approach
,”
International Journal of Modern Physics B
30
,
1630009
(
2016
).
4.
R.
Franzosi
and
V.
Penna
, “
Chaotic behavior, collective modes, and self-trapping in the dynamics of three coupled bose-einstein condensates
,”
Physical Review E
67
,
046227
(
2003
).
5.
A. R.
Kolovsky
and
A.
Buchleitner
, “
Quantum chaos in the bose-hubbard model
,”
Europhysics Letters (EPL)
68
,
632
638
(
2004
).
6.
S.
Mossmann
and
C.
Jung
, “
Semiclassical approach to bose-einstein condensates in a triple well potential
,”
Physical Review A
74
,
033601
(
2006
).
7.
G.
Arwas
,
A.
Vardi
, and
D.
Cohen
, “
Superfluidity and chaos in low dimensional circuits
,”
Scientific reports
5
,
13433
(
2015
).
8.
D. V.
Makarov
and
M. Y.
Uleysky
, “
Chaos-assisted formation of immiscible matter-wave solitons and self-stabilization in the binary discrete nonlinear schrödinger equation
,”
Communications in Nonlinear Science and Numerical Simulation
43
,
227
238
(
2017
).
9.
C.
Khripkov
,
A.
Vardi
, and
D.
Cohen
, “
Many-body dynamical localization and thermalization
,” arXiv preprint arXiv:1908.03868 (
2019
).
10.
R.
Franzosi
,
V.
Penna
, and
R.
Zecchina
, “
Quantum dynamics of coupled bosonic wells within the bose–hubbard picture
,”
International Journal of Modern Physics B
14
,
943
961
(
2000
).
11.
M.
Albiez
,
R.
Gati
,
J.
Fölling
,
S.
Hunsmann
,
M.
Cristiani
, and
M. K.
Oberthaler
, “
Direct observation of tunneling and nonlinear self-trapping in a single bosonic josephson junction
,”
Physical review letters
95
,
010402
(
2005
).
12.
R.
Gati
and
M.
Oberthaler
, “
A bosonic josephson junction
,”
Journal of Physics B: Atomic, Molecular and Optical Physics
40
,
R61
(
2007
).
13.
K.
Nemoto
,
C.
Holmes
,
G. J.
Milburn
, and
W.
Munro
, “
Quantum dynamics of three coupled atomic bose-einstein condensates
,”
Physical Review A
63
,
013604
(
2000
).
14.
R.
Franzosi
and
V.
Penna
, “
Self-trapping mechanisms in the dynamics of three coupled bose-einstein condensates
,”
Physical Review A
65
,
013601
(
2001
).
15.
F. M.
Cucchietti
,
H. M.
Pastawski
, and
R. A.
Jalabert
, “
Universality of the lyapunov regime for the loschmidt echo
,”
Physical Review B
70
,
035311
(
2004
).
16.
A.
Goussev
,
R. A.
Jalabert
,
H. M.
Pastawski
, and
D. A.
Wisniacki
, “
Loschmidt echo
,”
Scholarpedia
7
,
11687
(
2012
).
17.
Y. A.
Kharkov
,
V.
Sotskov
,
A.
Karazeev
,
E.
Kiktenko
, and
A.
Fedorov
, “
Revealing quantum chaos with machine learning
,” arXiv preprint arXiv:1902.09216 (
2019
).
18.
E.
Graefe
and
H.
Korsch
, “
Semiclassical quantization of an n-particle bose-hubbard model
,”
Physical Review A
76
,
032116
(
2007
).
19.
A.
Richaud
and
V.
Penna
, “
Phase separation can be stronger than chaos
,”
New Journal of Physics
20
,
105008
(
2018
).
20.
J.
Esteve
,
C.
Gross
,
A.
Weller
,
S.
Giovanazzi
, and
M.
Oberthaler
, “
Squeezing and entanglement in a bose–einstein condensate
,”
Nature
455
,
1216
(
2008
).
21.
T.
Zibold
,
E.
Nicklas
,
C.
Gross
, and
M. K.
Oberthaler
, “
Classical bifurcation at the transition from rabi to josephson dynamics
,”
Physical review letters
105
,
204101
(
2010
).
22.
A.
Bychek
,
D.
Maksimov
, and
A.
Kolovsky
, “
Noon state of bose atoms in the double-well potential via an excited-state quantum phase transition
,”
Physical Review A
97
,
063624
(
2018
).
23.
A.
Smerzi
and
A.
Trombettoni
, “
Nonlinear tight-binding approximation for bose-einstein condensates in a lattice
,”
Physical Review A
68
,
023613
(
2003
).
24.
A. R.
Kolovsky
,
H. J.
Korsch
, and
E.-M.
Graefe
, “
Bloch oscillations of bose-einstein condensates: Quantum counterpart of dynamical insta- bility
,”
Physical Review A
80
,
023617
(
2009
).
25.
Z.
Sándor
,
B.
Érdi
,
A.
Széll
, and
B.
Funk
, “
The relative lyapunov indicator: an efficient method of chaos detection
,”
Celestial Mechanics and Dynamical Astronomy
90
,
127
138
(
2004
).
26.
S.
Prants
,
M.
Edelman
, and
G.
Zaslavsky
, “
Chaos and flights in the atom-photon interaction in cavity qed
,”
Physical Review E
66
,
046222
(
2002
).
27.
A. R.
Kolovsky
, “
Semiclassical quantization of the bogoliubov spectrum
,”
Physical review letters
99
,
020401
(
2007
).
28.
A. R.
Kolovsky
and
D. L.
Shepelyansky
, “
Dynamical thermalization in isolated quantum dots and black holes
,”
EPL (Europhysics Letters)
117
,
10003
(
2017
).
29.
A. R.
Kolovsky
, “
Microscopic models of source and sink for atomtronics
,”
Physical Review A
96
,
011601
(
2017
).
30.
F.
Borgonovi
,
F. M.
Izrailev
,
L. F.
Santos
, and
V. G.
Zelevinsky
, “
Quantum chaos and thermalization in isolated systems of interacting particles
,”
Physics Reports
626
,
1
58
(
2016
).
This content is only available via PDF.