Solar cell-based Copper Indium Gallium Selenide (CIGS) is one type of solar cell that has high efficiency. However, the most commonly used vapor deposition technique to deposit CIGS is a technique that requires high environmental control and cost. The research aims to produce thin-film CIGS with hot injection methods. Variations of the Decantation 4, 6 and 8 times were performed to acquire the pure CIGS nanoparticles carried out to study their influence on phases, crystal structures, morphologies, and optical properties at the same time to the methods of deposition of the Doctor Blade. CIGS Film is defied over the ITO substrate with the Doctor blade technique. The XRD diffraction pattern shows the structure of tetragonal crystals. CIGS grain size increases with the number of oleylamine solvent decantation processes. SEM results indicate that CIGS can be deposited evenly throughout the substrate surface. CIGS with decantation process as much as 8 times easiest to be deposited with the best properties to be applied as easy and cheap CIGS solar cell.

1.
C.-H.
Ho
and
C.-C.
Pan
,
Opt. Mater. Express
3
,
480
(
2013
).
2.
H.
Heriche
,
Z.
Rouabah
, and
N.
Bouarissa
,
Optik
127
,
11751
(
2016
).
3.
M.
Powalla
,
S.
Paetel
,
D.
Hariskos
,
R.
Wuerz
,
F.
Kessler
,
P.
Lechner
,
W.
Wischmann
, and
T.M.
Friedlmeier
,
Engineering
3
,
445
(
2017
).
4.
S.T.
Connor
,
C.-M.
Hsu
,
B.D.
Weil
,
S.
Aloni
, and
Y.
Cui
,
J. Am. Chem. Soc.
131
,
4962
(
2009
).
5.
C.-H.
Ho
,
Appl. Phys. Lett.
96
,
061902
(
2010
).
6.
I.
Tsuji
,
H.
Kato
,
H.
Kobayashi
, and
A.
Kudo
,
J. Am. Chem. Soc.
126
,
13406
(
2004
).
7.
I.
Tsuji
,
H.
Kato
, and
A.
Kudo
,
Angew. Chem. Int. Ed.
44
,
3565
(
2005
).
8.
C.-H.
Ho
and
C.-C.
Pan
,
AIP Advances
2
,
022123
(
2012
).
9.
K.
Kikuchi
,
S.
Imura
,
K.
Miyakawa
,
H.
Ohtake
, and
M.
Kubota
,
Journal of Physics: Conference Series
619
,
1
(
2015
).
10.
L.
Yan
,
Y.
Bai
,
B.
Yang
,
N.
Chen
,
Z.
Tan
,
T.
Hayat
, and
A.
Alsaedi
,
Current Applied Physics
18
,
484
(
2018
).
11.
M.G.
Faraj
,
K.
Ibrahim
, and
A.
Salhin
,
Optoelectronics and Advanced Materials, Rapid Communications
4
,
2092
(
2010
).
12.
M.G.
Faraj
,
K.
Ibrahim
, and
A.
Salhin
,
Materials Science in Semiconductor Processing
15
,
165
(
2012
).
13.
M.G.
Faraj
,
M.Z.
Pakhuruddin
, and
P.
Taboada
,
Journal of Electronic Materials
46
,
6745
(
2017
).
14.
Y.
Liu
,
D.
Kong
,
J.
Li
,
C.
Zhao
,
C.
Chen
, and
J.
Brugger
,
Energy Procedia
16
,
217
(
2012
).
15.
J.
Der Wu
,
L. Ting
Wang
, and
C.
Gau
,
Solar Energy Materials and Solar Cells
98
,
404
(
2012
).
16.
S.A.
Vanalakar
,
G.L.
Agwane
,
M.G.
Gang
,
P.S.
Patil
,
J.H.
Kim
, and
J.Y.
Kim
,
Physica Status Solidi (C) Current Topics in Solid State Physics
12
,
500
(
2015
).
17.
M.G.
Faraj
,
K.
Ibrahim
, and
A.
Salhin
,
Materials Science in Semiconductor Processing
15
,
165
(
2012
).
18.
F.
Fiévet
and
R.
Brayner
, in
Nanomaterials: A Danger or a Promise?
, edited by
R.
Brayner
,
F.
Fiévet
, and
T.
Coradin
(
Springer London
,
London
,
2013
), pp.
1
25
.
19.
W.
Liu
,
M.
Qin
,
L.
Xu
,
S.
Yi
,
J.
Deng
, and
Z.
Huang
,
Transactions of Nonferrous Metals Society of China
28
,
1626
(
2018
).
20.
M.Á. López
Zavala
,
S.A. Lozano
Morales
, and
M.
Ávila-Santos
,
Heliyon
3
,
e00456
(
2017
).
21.
M.A.K.
Mankoshi
,
F.I.
Mustafa
, and
N.J.
Hintaw
,
J. Phys.: Conf. Ser.
1032
,
012019
(
2018
).
22.
S.
Riaz
,
A.
Sadaqaat
, and
S.
Naseem
,
Advances in Nano, Biomechanics, Robotics, and Energy Research
666
(
2012
).
23.
A.C.
Badgujar
,
R.O.
Dusane
, and
S.R.
Dhage
,
Materials Science in Semiconductor Processing
81
,
17
(
2018
).
24.
K.P.
Mubiayi
,
J.
Freitas
,
M.J.
Moloto
,
N.
Moloto
,
L.M.
Sikhwivhilu
, and
A.F.
Nogueria
,
Open Physics
14
, (
2016
).
This content is only available via PDF.