The amount of greenhouse gas emissions released during the combustion of fossil fuels directly affects the global temperature in the recent period. The assessment of future climate projections is necessary to plan mitigation and adaptation efforts in various sectors. For global warming studies, different scenarios based on the rate of radiative forcing and mitigation efforts in the future had been prepared as RCP or the Representative Concentration Pathways. In this study, two of the four scenarios will be used to project the future changes of climate parameters – the RCP8.5 scenario, where no mitigation effort is taken into account and the RCP4.5 scenario, which assumes the business-as-usual will still take place in the future. Observational data and Global Circulation Model (GCM) output from the Coupled Model Intercomparison Project 5 (CMIP5) are used to assess the future climate projection. The historical series of 29 models from GCM (Global Circulation Model) will be evaluated using daily observational data from 70 meteorological stations in Indonesia for 20 years period (1986 – 2005) based on the similarity of its spatial and temporal patterns. The output of GCMs is bias-corrected before being used in the analysis process, using quantile mapping method. Five models are chosen based on the correlation values to project the extreme climate events over the Indonesia region, using the Expert Team on Climate Change Detection and Indices (ETCCDI), or the extreme climate indices. The indices used are the total annual rainfall (Prcptot), consecutive dry days (CDD), consecutive rainy days (CWD), monthly maximum temperature values (TXx) and monthly minimum temperature values (TXn). Compared to the baseline period (1981 – 2010), most of the extreme climate events will be increased significantly in the future periods (2011 – 2040, 2041 – 2070, 2071 – 2100), except for CDD.

1.
R.
Naylor
,
K.
Hindar
,
I. A.
Fleming
,
R.
Goldburg
,
S.
Williams
,
J.
Volpe
,
F.
Whoriskey
,
J.
Eagle
,
D.
Kelso
, and
M.
Mangel
,
Bioscience.
55
,
427
437
(
2005
).
2.
N. C.
Jourdain
,
A. S.
Gupta
,
A. S.
Taschetto
,
C. C.
Ummenhofer
,
A. F.
Moise
, and
K.
Ashok
,
Clim. Dyn.
41
,
3073
3102
(
2013
).
3.
A.
Susandi
,
I.
Herlianti
,
M.
Tamamadin
, and
I.
Nurlela
,
Jurnal Ekonomi Lingkungan
12
(
2
) (
2008
).
4.
I.
Pabalik
,
N.
Ihsan
, and
M.
Arsyad
,
Jurnal Sains Pendidikan Fisika
1
,
88
92
(
2015
).
5.
A. M.
Thomson
,
Clim. Change
109
,
77
94
(
2011
).
6.
G. P.
Wayne
,
The Beginner's Guide to Representative Concentration Pathways
(
Skeptical Science
,
2013
).
7.
T.
Reichle
and
J.
Kim
, (
2008
). Uncertainties in the climate mean state of global observations, reanalyses, and the GFDL climate model.
American Geophysical Union
.
8.
L.
Brekke
and
J.
Barsugli
, "Uncertainties in Projections of Future Changes in Extremes,” in
Extremes in a Changing Climate: Detection, Analysis, and Uncertainty
, edited by
A.
Amir
,
E.
David
,
Hsu
K.
,
S.
Siegfried
,
S.
Soroosh
(
Springer. Dordrecht Heidelberg
,
2012
), pp.
309
346
.
9.
J.
Rhee
and
J. J.
Cho
,
Hydrometeorol.
17
,
437
451
(
2015
).
10.
R. L.
Wilby
,
S. P.
Charles
,
E.
Zorita
,
B.
Timbal
,
P.
Whetton
, and
L. O
Mearns
,
Guidelines for Climate Scenarios Developed from Statistical Downscaling Methods
(
Task Group on Data and Scenario Support for Impacts and Climate Analysis
,
Geneva
,
2004
).
11.
C.
Piani
,
J. O.
Haerter
, and
E.
Coppola
,
Theor. Appl. Climatol.
99
,
187
192
(
2010
).
12.
X.
Zhang
and
F.
Yang
,
RClimDex (1.0) User Manual
(
Climate Research Branch Environment Canada
,
Ontario
2004
).
13.
N. M.
Hidayat
,
A. E.
Pandiangan
, and
A.
Pratiwi
,
Jurnal Meteorologi Klimatologi dan Geofisika
5
,
37
45
(
2018
).
14.
C.
Tebaldi
,
K.
Hayhoe
,
J. M.
Arblaster
, and
G. A.
Meehl
,
Clim. Change
79
,
185
211
(
2006
).
This content is only available via PDF.