Mullite-zirconia is a ceramic material that has mechanical properties values that are close with the jaw bone. Lately, various precursor characteristics were used to produce the mullite-zirconia as the starting material. However, the processing requires a higher temperature to achieve crystallization and densification of mullite-zirconia. In this study, mullite-zirconia was synthesized through solid sintering of 3Al2O3−2SiO2 xerogel and ZrO2 xerogel. Those xerogels were produced by the sol-gel method and characterized by particle size analyzer and scanning electron microscope. Subsequently, those xerogel were categorized into five batch composition (AlSi, Zr, 85AlSi/15Zr, 80AlSi/20Zr and 75AlSi/25Zr). These samples were then sintered at 1300 °C for 2 hours and characterized by X-ray diffraction. The result shows the acquired particle size of 3Al2O3−2SiO2 xerogel and ZrO2 xerogel are 355.7 nm and 414.3 nm respectively. The morphology of these samples are irregular, however, for ZrO2 xerogel, it has angular morphology in some particles. The XRD exposed AlSi turn into 100% mullite. Meanwhile, Zr produces 22% tetragonal zirconia and 78 % monoclinic zirconia. For 85AlSi/15Zr, it contains mullite and monoclinic zirconia with fraction amounts are 74.4 % and 25.6 % respectively. Subsequently, 80AlSi/20Zr shows the lower fraction amount of mullite crystallinity (71.5 %) along with increasing the amount of monoclinic zirconia (28.5%). Lastly, 75AlSi/25Zr shows the crystallinity of sillimanite, tridymite and monoclinic zirconia with the fraction amount are 57.3 %, 12.1%, 30.6 % respectively. We conclude the reduction in the number of zirconia is able to maintain the mullite crystal, however, along with the increase in zirconia, it inhibits the formation of the mullite structure due to Zr atom act as an inhibitor in substitution of Al with Si atom to form the mullite crystalline.

1.
Z.
Ozkurt
and
E.
Kazazoglu
,
J. Oral Implantol.
37
,
367
76
(
2011
).
2.
R.
Depprich
,
H.
Zipprich
,
M.
Ommerborn
,
C.
Naujoks
,
H-P.
Wiesmann
,
S.
Kiattavorncharoen
,
H-C
Lauer
,
U.
Meyer
,
N. R.
Kubler
and
Handschel
,
Head Face Med.
4
,
30
:
1
8
(
2008
).
3.
R. B.
Osman
,
S.
Ma
,
W.
Duncan
,
R. K.
De Silva
,
A.
Siddiqi
and
M. V.
Swain
,
Clin. Oral Implants Res.
24
,
592
597
(
2013
).
4.
K-H.
Bormann
,
N-C
Gellrich
,
H.
Kniha
,
M.
Dard
,
M.
Wieland
and
M.
Gahlert
,
Clin. Oral Implants Res.
23
,
1210
1216
(
2012
).
5.
P.
Kumar
,
M.
Nath
,
A.
Ghosh
and
H. S.
Tripathi
,
Trans. Nonferrous Met. Soc. China
26
,
2397
2403
(
2016
).
6.
N.
Rendtorff
,
L.
Garrido
and
E.
Aglietti
,
Ceram. Int.
35
779
786
(
2009
).
7.
E.
Pérez-Pevida
,
A.
Brizuela-Velasco
,
D.
Chávarri-Prado
,
A.
Jiménez-Garrudo
,
F.
Sánchez-Lasheras
,
E.
Solaberrieta-Méndez
,
M.
Diéguez-Pereira
,
F. J.
Fernández-González
,
B.
Dehesa-Ibarra
and
F.
Monticelli
,
Biomed Res. Int.
2016
,
185040:1
9
(
2016
).
8.
H. W.
Choi
,
Y. S.
Park
,
S. H.
Chung
,
M. H.
Jung
,
W.
Moon
and
S. H.
Rhee
,
Korean J. Orthod.
4
,
229
237
(
2017
).
9.
T.
Koyama
,
S.
Hayashi
,
A.
Yasumori
and
K.
Okada
,
J. Eur. Ceram. Soc.
14
,
295
302
(
1994
).
10.
P.
Kumar
,
M.
Nath
,
A.
Ghosh
and
H. S.
Tripathi
,
Bull. Mater. Sci.
38
,
1539
1544
(
2015
).
11.
H.
Ashrafi
,
R.
Emadi
and
R. Z.
Foroushani
,
Adv. Powder Technol.
26
,
1452
1457
(
2015
).
12.
R. G.
Carvalho
,
F. J.
Oliveira
,
R. F.
Silva
and
F. M.
Costa
,
Mater. Des.
61
,
211
216
(
2014
).
13.
A. V.
Khmelev
,
Refract. Ind. Ceram.
55
,
137
142
(
2014
).
14.
T.
Ebadzadeh
and
E.
Ghasemi
,
Mater. Sci. Eng. A
283
,
289
97
(
2000
).
15.
A. M.
Gabrukh
,
O. B.
Skorodumova
,
G. D.
Semchenko
and
K. P.
Vernigora
,
Glas. Ceram.
53
,
27
9
(
1996
).
16.
L. S.
Cividanes
,
T. M. B.
Campos
,
L. A.
Rodrigues
,
D. D.
Brunelli
and
G. P.
Thim
,
J. Sol-Gel Sci. Technol.
55
,
111
125
(
2010
).
17.
Q-M.
Yaun
,
J-Q.
Tan
,
J-Y.
Shen
,
X-H.
Zhu
and
Z-F.
Yang
,
J. Am. Ceram. Soc.
69
,
268
269
(
1986
).
18.
Match!, Version 2.x, CRYSTAL IMPACT
,
Kreuzherrenstr
.
102
,
532227
Bonn
,
Germany
. (URL: http://www.crystalimpact.com/match).
19.
T. Y.
Chen
,
H. P.
Cho
,
C. S.
Jwo
and
L. Y.
Jeng
,
Adv. Mater. Sci. Eng.
2013
,
686409:1
8
(
2013
).
20.
Y.
Faza
,
Z.
Hasratiningsih
,
A.
Harmaji
and
I. M.
Joni
, “
Preparation and characterization of zirconia-alumina system via solution and solid phase mixing method
,” in
the 2ⁿᵈ International Conference and Exhibition on Powder Technology Indonesia-(ICePTi)2017
,
AIP Conference Proceedings
1927
, edited by
I. M.
Joni
 et al (
American Institute of Physics, Melville, NY
,
2018
), pp.
030030:1
5
.
21.
I.
Jaymes
,
A.
Douy
,
D.
Massiot
and
J-P.
Busnel
,
J. Am. Ceram. Soc.
78
,
2648
2654
(
1995
).
22.
H. A.
Abbas
,
F. F.
Hamad
,
A. K.
Mohamad
,
Z. M.
Hanafi
and
M.
Kilo
,
Diffus. Fundam.
8
,
7.1
7.8
(
2008
).
23.
J.
Eichler
,
U.
Eisele
and
Rödel
J
,
J. Am. Ceram. Soc.
87
,
1401
1403
(
2004
).
24.
H.
Schneider
,
R. X.
Fischer
and
J.
Schreuer
,
J. Am. Ceram. Soc.
98
,
2948
2967
(
2015
).
25.
H.
Schneider
,
K.
Okada
and
J.
Pask
, Mullite and Mullite Ceramics (
Wiley and Sons Ltd
,
New Jersey
,
1994
).
26.
R. W. G.
Wyckoff
,
Am. J. Sci.
11
,
101
12
(
1926
).
This content is only available via PDF.