Thermoplastic Elastomer Vulcanized (TPE-V) syntactic foams made by Thermo-Expandable Microcapsules (TEMs) are becoming of a large interest for automotive industry. TPE-Vs combine advantages of class rubber compound properties with an easier manufacture process and are recyclable. Therefore, TPE-Vs are more and more used to manufacture automotive sealing system by an extrusion process, which is the focus of this research. Due to the two-phase structure of TPE-V, classical extrusion foaming technologies, such as chemical and physical foaming, are complex to be controlled. Thus, TEMs show an outstanding ability to be effective and produce repeatable microstructure with standard extrusion equipment. TEMs consist in a mixture of liquid hydrocarbons, encapsulated by a gas-proof polymeric shell. Exposed to elevated temperatures, the internal pressure drives the dilation of the TEMs, as a result a TPE-V syntactic foam is produced. The aim of this study is to understand where the expansion occurs and how can it be affected by extrusion process parameters. Temperature is a well-known key parameter to control final expansion of TEMs. Hence, measurements at high pressure and temperature were done to find out the location of expansion during extrusion process. Additionally, we have designed three groups of three dies to apply different pressure drops, pressure drop rates and residence time, inside the die. Under these process conditions, density, cell microstructure and viscosity have been investigated.

1.
J.
Stehr
,
Int. Polymer Sci. Tech.
43
(
2016
).
2.
C.
Harper
,
Handbook of plastics, elastomers & composites, McGraw-Hill Professional
(
2002
)
3.
A. M.
Gessler
and
J. W. H.
Haslett
, U.S. Patent No. 3,037,954, (5 June
1962
).
4.
A.
Dutta
and
M.
Cakmak
,
Rubber Chem. Technol.
65
, pp.
932
955
(
1992
).
5.
D.
Kropp
,
W.
Michaeli
,
T.
Herrmann
, and
O.
Schröder
,
Journal of Cellular Plastics
34
, pp.
304
311
(
1998
).
6.
A.
Sahnoune
,
Journal of Cellular Plastics
37
, pp.
149
159
(
2001
).
7.
S. G.
Kim
,
C. B.
Park
, and
M.
Sain
,
Journal of Cellular Plastics
44
, pp.
53
67
(
2008
).
8.
M.
Shimbo
,
D. F.
Baldwin
, and
N. P.
Suh
,
Polym. Eng. Sci.
35
, pp.
1387
1393
(
1995
).
9.
L. M.
Matuana
,
C. B.
Park
, and
J. J.
Balatinecz
,
Polym. Eng. Sci.
38
, pp.
1862
1872
(
1998
).
10.
C. B.
Park
,
D. F.
Baldwin
, and
N. P.
Suh
,
Polym. Eng. Sci.
35
, pp.
432
440
(
1995
).
11.
X.
Xu
,
C. B.
Park
,
D.
Xu
, and
R.
Pop-Iliev
,
Polym. Eng. Sci.
43
, pp.
1378
1390
(
2003
).
12.
X.
Xu
and
C. B.
Park
,
J. Appl. Polym. Sci.
109
, pp.
3329
3336
(
2008
).
13.
Q.
Guo
,
J.
Wang
,
C. B.
Park
, and
M.
Ohshima
,
Ind. Eng. Chem. Res.
45
, pp.
6153
6161
(
2006
).
14.
D. S.
Morehouse
 Jr
and
R. J.
Tetreault
, U.S. Patent No. 3,615,972 (26 October
1971
).
15.
J.
Paukkunen
, “
Foaming of thermoplastic elastomers
”, Master Thesis,
Tampere University of Technology
(
2012
).
16.
S.
Ries
,
A.
Spoerrer
, and
V.
Altstaedt
,
AIP Conference Proceeding
,
1593
, pp.
401
410
(
2014
).
17.
Q.
Guo
,
S. A. Andrew
Kenny
, and
G.
Rizvi
,
SPE ANTEC
, (
2017
).
18.
L. A.
Goettler
,
J. R.
Richwine
, and
F. J.
Wille
,
Rubber Chem. Technol.
55
, pp.
1448
1463
(
1982
).
19.
P. K.
Han
and
J. L.
White
,
Rubber Chem. Technol.
68
, pp.
728
738
(
1995
).
20.
D. F.
Baldwin
,
C. B.
Park
, and
N. P.
Suh
,
Polym. Eng. Sci.
38
, pp.
674
688
(
1998
).
21.
W. P.
Cox
and
E. H.
Merz
,
J. Polym. Sci.
28
, pp.
619
621
(
1958
).
22.
K.
Yasuda
,
R. C.
Armstrong
, and
R. E.
Cohen
,
Rheol. Acta
20
, pp.
163
178
(
1981
).
23.
Y.
Kawaguchi
 et al,
Polym. Eng. Sci.
50
, pp.
835
842
(
2009
).
24.
J. L. S.
Wales
,
J. L.
den Otter
, and
H.
Janeschitz-Kriegl
,
Rheol. Acta
4
, pp.
146
152
(
1965
).
25.
N.
Yang
,
J.
Boselli
, and
I.
Sinclair
,
J. Microsc.
201
, pp.
189
200
(
2001
).
26.
C. W.
Macosko
,
Rheology: Principles, Measurements, and Applications
,
WILEY-VCH
(
1994
).
This content is only available via PDF.