Nutrient composition in soil analysis is investigated by using nitrogen (N) in form of nitrate (NO3-) as a representative factor correlated with NIR spectroscopy spectral absorbance. NIR spectroscopy method of sampling has been tested to overcome time consuming, complex chemical analysis procedure and invasive sampling method in order to identify nitrate content in soil samples. Spectral absorbance data from range 950 nm to 1650 nm correlated with nitrate reading then tested through few pre-processing techniques. Five techniques have been listed as top performer, which are Multiplicative Scatter Correction using Common Offset (MSCCO), Multiplicative Scatter Correction (MSC), Range Normalization (RN), Mean Normalization (MN) and Reduced (R) technique. Data calibration and prediction of both data is evaluated using Partial Least Square Regression (PLSR) model. In the final analysis, R technique has achieved as top performer pre-processing technique for both calibration and prediction results, with the coefficient of determination (R2) values of 0.9991 and root mean square error (RMSE) values of 0.0886 for prediction. Overall, the correlation of NIRS absorbance data and nitrate can be obtained using PLSR model with R pre-processing technique. Henceforth, we can conclude that the NIRS method of sampling can be used to identify nitrate content in soil analysis by using time saving, non-invasive and less laborious method of sampling.

1.
Mohamed
ES
,
Saleh
AM
,
Belal
AB
,
Gad
AA
.
Application of near-infrared reflectance for quantitative assessment of soil properties
.
Egypt J Remote Sens Sp Sci [Internet].
2018
;
21
(
1
):
1
14
. Available from:
2.
Qi
H
,
Paz-Kagan
T
,
Karnieli
A
,
Jin
X
,
Li
S.
Evaluating calibration methods for predicting soil available nutrients using hyperspectral VNIR data
.
Soil Tillage Res [Internet].
2018
;
175
(September 2017):
267
75
. Available from:
3.
Ramaroson
VH
,
Becquer
T
,
SO
,
Razafimahatratra
H
,
Delarivière
JL
,
Blavet
D
, et al 
Mineralogical analysis of ferralitic soils in Madagascar using NIR spectroscopy
.
Catena.
2018
;
168
(April 2017):
102
9
.
4.
Wang
C
,
Zhang
T
,
Pan
X.
Potential of visible and near-infrared reflectance spectroscopy for the determination of rare earth elements in soil
.
Geoderma [Internet].
2017
;
306
(July):
120
6
. Available from:
5.
Yan
L
,
Escobar
MS
,
Kaneko
H
,
Funatsu
K.
Detection of nonlinearity in soil property prediction models based on near-infrared spectroscopy
.
Chemom Intell Lab Syst [Internet].
2017
;
167
:
139
51
. Available from:
6.
Yu
X
,
Liu
Q
,
Wang
Y
,
Liu
X
,
Liu
X.
Evaluation of MLSR and PLSR for estimating soil element contents using visible/near-infrared spectroscopy in apple orchards on the Jiaodong peninsula
.
Catena [Internet].
2016
;
137
:
340
9
. Available from:
7.
Dick
WA
,
Thavamani
B
,
Conley
S
,
Blaisdell
R
,
Sengupta
A.
Prediction of β-glucosidase and β-glucosaminidase activities, soil organic C, and amino sugar N in a diverse population of soils using near infrared reflectance spectroscopy
.
Soil Biol Biochem [Internet].
2013
;
56
:
99
104
. Available from:
8.
Sut
M
,
Fischer
T
,
Repmann
F
,
Raab
T
,
Dimitrova
T.
Feasibility of Field Portable Near Infrared (NIR) Spectroscopy to Determine Cyanide Concentrations in Soil
.
Water, Air, Soil Pollut [Internet].
2012
;
223
(
8
):
5495
504
. Available from:
9.
Shafiq Amirul Sabri
M
,
Endut
R
,
B. M.
Rashidi
C,
R.
Laili
A,
A.
Aljunid
S,
Ali
N.
Analysis of Near-infrared (NIR) spectroscopy for chlorophyll prediction in oil palm leaves
.
Bull Electr Eng Informatics.
2019
;
8
(
2
):
506
13
.
10.
Xuemei
L
,
Jianshe
L.
Using short wave visible-near infrared reflectance spectroscopy to predict soil properties and content
.
Spectrosc Lett.
2014
;
47
(
10
):
729
39
.
11.
Zheng
Z-L.
Carbon and nitrogen nutrient balance signaling in plants. Plant Signal Behav [Internet].
2009/07/20.
2009
Jul;
4
(
7
):
584
91
. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19820356
12.
Han
J
,
Zhou
Z.
Dynamics of soil water evaporation during soil drying: Laboratory experiment and numerical analysis
.
Sci World J.
2013
;
2013
.
13.
An
N
,
Tang
C-S
,
Xu
S-K
,
Gong
X-P
,
Shi
B
,
Inyang
H.
Effects of soil characteristics on moisture evaporation
.
Eng Geol.
2018
Mar 1;
239
.
14.
Li
D
,
Chen
X
,
Peng
Z
,
Chen
S
,
Chen
W
,
Han
L
, et al 
Prediction of soil organic matter content in a litchi orchard of South China using spectral indices
.
Soil Tillage Res [Internet].
2012
;
123
:
78
86
. Available from:
15.
Santra
P
,
Sahoo
RN
,
Das
BS
,
Samal
RN
,
Pattanaik
AK
,
Gupta
VK
.
Estimation of soil hydraulic properties using proximal spectral reflectance in visible, near-infrared, and shortwave-infrared (VIS-NIR-SWIR) region
.
Geoderma [Internet].
2009
;
152
(
3–4
):
338
49
. Available from:
16.
Thangappan
A
,
Pathangay
V.
Non-Invasive Blood Glucose Estimation from Near Infrared Spectrum using Gradient Boosted Tree Models
.
Ieee-Embc.
2016
;(September):
3
.
17.
Inácio
MRC
,
de Lima
KMG
,
Lopes
VG
,
Pessoa
JDC
,
de Almeida Teixeira
GH
.
Total anthocyanin content determination in intact açaí (Euterpe oleracea Mart.) and palmitero-juçara (Euterpe edulis Mart.) fruit using near infrared spectroscopy (NIR) and multivariate calibration
.
Food Chem.
2013
;
136
(
3
):
1160
4
.
18.
Hervé
A.
Partial least squares regression and projection on latent structure regression (PLS Regression
).
Wiley Interdiscip Rev Comput Stat.
2010
Jan;
2
(
1
):
97
106
.
19.
Tobias
RD
.
An introduction to partial least squares regression
.
SAS Conf Proc SAS Users Gr Int 20 (SUGI 20)
.
1995
;
2
5
.
20.
Anusia
H
,
Jayaselan
J
,
Nawi
NM
,
Ishak
W
,
Ismail
W
,
Rashid
A
, et al 
Application of Spectroscopy for Nutrient Prediction of Oil Palm.
2017
;
15
(
3
):
1
9
.
21.
Mat
Nawi N
,
Chen
G
,
Jensen
T
,
Mehdizadeh
SA
.
Prediction and classification of sugar content of sugarcane based on skin scanning using visible and shortwave near infrared
.
Biosyst Eng.
2013
;
115
(
2
):
154
61
.
22.
Konstantinos G.
Kyprianidis
and
Jan
Skvaril
. Developments in Near-Infrared Spectroscopy.
Croatia
:
Janeza Trdine
9
, 51000 Rijeka, Croatia;
2017
.
This content is only available via PDF.