This paper presents the parameter estimation and the simultaneous testing for the parameters of a modified multivariate generalized Poisson regression (MGPR) model that takes into account a measure of exposure and defines the correlation as a function of covariates. An exposure is included in the model to account for population size difference of the analysis units in the study where the exposure is not necessarily the same for each response variable. The correlations between the response variable are defined as a function of the covariates with the assumption that each response variable and their correlations are affected by the same covariates. The Newton method with BHHH algorithm is used to obtain maximum likelihood estimators of the modified MGPR model. The test statistic G2 for simultaneous hypothesis testing is achieved using the likelihood ratio method which is asymptotically chi-square distributed with v degrees of freedom.

1.
R.
Winkelmann
,
Econometric analysis of count data
, (
Springer
,
Berlin
,
2008
).
2.
A. C.
Cameron
and
P. K.
Trivedi
,
Regression analysis of count data
, (
Cambridge University Press
,
New York
,
2013
).
3.
M.
Geoffrey
and
D.
Peel
,
Finite Mixture Models
, (
John Wiley & Sons
,
New York
,
2000
).
4.
M.
Denuit
,
X.
Marchal
,
S.
Pitrebois
,
J. F.
Walhin
,
Actuarial Modeling of Claim Counts: Risk Classification, Credibility and Bonus-Malus Systems
, (
John Wiley & Sons
,
West Sussex, UK
,
2007
).
5.
P. C.
Consul
and
G. C.
Jain
, “
A generalization of the Poisson distribution
,”
Technometrics
, (
1973
), pp.
791
799
.
6.
F.
Famoye
, “
A new bivariate generalized Poisson distribution
,”
Statistica Neerlandica
, (
2010
), pp.
112
124
.
7.
P. C.
Consul
and
M. M.
Shoukri
, “
The generalized Poisson distribution when the sample mean is larger than the sample variance
,”
Communications in Statistics - Simulation and Computation
, (
1985
), pp.
667
681
.
8.
B.
Lerner
,
A.
Lone
, and
M.
Rao
, “
On generalized Poisson distributions
,”
Probability and Mathematical Statistics
, (
1997
), pp.
377
385
.
9.
H. J. H.
Tuenter
, “
On the generalized Poisson distribution
,”
Statistica Neerlandica
, (
2000
), pp.
374
376
.
10.
P. C.
Consul
,
Generalized Poisson distributions: properties and applications
, (
Marcel Dekker, Inc.
,
New York
,
1989
).
11.
F.
Famoye
, “
Restricted generalized Poisson regression model
,”
Communications in Statistics - Theory and Methods
, (
1993
), pp.
1335
1354
.
12.
J.
Lakshminarayana
,
S. N. N.
Pandit
, and
K. S.
Rao
, “
On a bivariate Poisson distribution
,”
Communications in Statistics - Theory and Methods
, (
1999
), pp.
267
276
.
13.
F.
Famoye
,
R.
Okafor
, and
M. O.
Adamu
, “
A multivariate generalized Poisson distribution
,”
Journal of Statistical Theory and Applications
, (
2011
), pp.
519
532
.
14.
F.
Famoye
, “
A multivariate generalized Poisson regression model
,”
Communications in Statistics - Theory and Methods
, (
2015
), pp.
497
511
.
15.
D.
Karlis
and
L.
Meligkotsidou
, “
Multivariate Poisson regression with covariance structure
,”
Statistics and Computing
, (
2005
), pp.
255
265
.
16.
Triyanto
,
Purhadi
,
B. W.
Otok
, and
S. W.
Purnami
, “
Parameter estimation of geographically weighted multi-variate Poisson regression
,”
Applied Mathematical Sciences
, (
2015
), pp.
4081
4093
.
17.
P. C.
Consul
,
F.
Famoye
, “
Generalized Poisson regression model
,”
Communications in Statistics - Theory and Methods
, (
1992
), pp.
89
109
.
18.
E. K.
Berndt
,
B. H.
Hall
,
R. E.
Hall
,
J. A.
Hausman
, “
Estimation and Inference in Nonlinear Structural Models
,”
Annals of Economic and Social Measurement
, (
1974
), pp.
653665
.
19.
V.
Martin
,
S.
Hurn
, and
D.
Harris
,
Econometric Modelling with Time Series: Specification, Estimation and Testing
, (
Cambridge University Press
,
2012
).
20.
Y.
Pawitan
,
In All Likelihood
, (
Clarendon Press
,
Oxford
,
2001
).
This content is only available via PDF.