Given a simple connected undirected graph G and let k be the maximum number of its vertices and its edges. Let f be a bijective labeling from the set of its edges to the set of odd integers from 1 up to 2q − 1, where q is the number of edges of G. The labeling f is called an edge odd graceful labeling on G if the weights of any two different vertices are different, where the weight of a vertex v is defined as the sum mod(2k) of all labels of edges that are incident to v. A graph is called an edge odd graceful graph if it admits an edge odd graceful labeling. In this paper, we show that there are some new classes of graphs that are edge odd graceful.
REFERENCES
1.
M.
Bača
, S.
Jendrol’
, M.
Miller
and J.
Ryan
, On irregular total labellings
, Discrete Mathematics
, 307
1378
–1388
(2007
).2.
M.
Bača
and M.K.
Siddiqui
, Total edge irregularity strength of generalized prism
, Applied Mathematics and Computation
, 235
168
–173
(2014
).3.
G.S.
Bloom
and S.W.
Golomb
, Application of numbered undirected graphs
, Proc. IEEE
65
(4
) 562
–570
(1977
).4.
G.S.
Bloom
and S.W.
Golomb
, Numbered complete graphs, unusual rulers and assorted applications, in: Theory and applications of Graphs in: Lecture Notes in Math
, 642
53
–65
(1978
), Springer-Verlag
, New York
.5.
R.
Cattel
, Graceful labellings of paths
, Discrete Mathematics
, 307-
24
3161
–3176
(2007
).6.
S.N.
Daoud
, Edge odd graceful labeling of some path and cycle related graphs
, AKCE International Journal of Graphs and Combinatorics
, 14
178
–203
(2017
).7.
J.A.
Gallian
, A dynamic survey of graph labelling
, The Electronic Journal of Combinatorics
, 17
(2017
).8.
J.
Ivančo
and S.
Jendrol’
, Total edge irregularity strength of trees
, Discussiones Mathematicae Graph Theory
, 26
449
–456
(2006
).9.
S.
Jendrol’
, J.
Misšuf
and R.
Soták
, Total edge irregularity strength of complete graphs and complete bipartite graphs
, Elec. Notes Discrete Math.
, 28
281
–285
(2007
).10.
P.
Jeyanthi
and S.
Philo
, Odd harmonious labeling of some new families of graphs
, Electronic Notes in Discrete Mathematics
, 48
165
–168
(2015
).11.
P.
Jeyanthi
and K.J.
Daisy
, Zk-Magic labeling of open star of graphs
, Bulletin of The International Mathematical Virtual Institute
, 7
243
–255
(2017
).12.
13.
R.W.
Putra
and Y.
Susanti
, On total edge irregularity strength of centralized uniform theta graphs
, AKCE International Journal of Graphs and Combinatorics
, 15
(1
) 7
–13
(2018
).14.
R.W.
Putra
, R.W. and Y.
Susanti
, The total edge irregularity strength of uniform theta graphs
, IOPScience Journal of Physics: Conference Series
, 2018 J. Phys.: Conf. Ser. 1097
012069
15.
L.
Ratnasari
and Y.
Susanti
, Total edge irregularity strength of ladder related graphs
, Asian-European Journal of Mathematics
, doi:.16.
A.
Solairaju
and K.
Chithra
, Edge-odd graceful graphs
, Electronic Notes in Discrete Mathematics
, 33
15
–20
(2009
).17.
This content is only available via PDF.
© 2019 Author(s).
2019
Author(s)