Given a simple connected undirected graph G and let k be the maximum number of its vertices and its edges. Let f be a bijective labeling from the set of its edges to the set of odd integers from 1 up to 2q − 1, where q is the number of edges of G. The labeling f is called an edge odd graceful labeling on G if the weights of any two different vertices are different, where the weight of a vertex v is defined as the sum mod(2k) of all labels of edges that are incident to v. A graph is called an edge odd graceful graph if it admits an edge odd graceful labeling. In this paper, we show that there are some new classes of graphs that are edge odd graceful.

1.
M.
Bača
,
S.
Jendrol’
,
M.
Miller
and
J.
Ryan
,
On irregular total labellings
,
Discrete Mathematics
,
307
1378
1388
(
2007
).
2.
M.
Bača
and
M.K.
Siddiqui
,
Total edge irregularity strength of generalized prism
,
Applied Mathematics and Computation
,
235
168
173
(
2014
).
3.
G.S.
Bloom
and
S.W.
Golomb
,
Application of numbered undirected graphs
,
Proc. IEEE
65
(
4
)
562
570
(
1977
).
4.
G.S.
Bloom
and
S.W.
Golomb
, Numbered complete graphs, unusual rulers and assorted applications, in:
Theory and applications of Graphs in: Lecture Notes in Math
,
642
53
65
(
1978
),
Springer-Verlag
,
New York
.
5.
R.
Cattel
,
Graceful labellings of paths
,
Discrete Mathematics
,
307-
24
3161
3176
(
2007
).
6.
S.N.
Daoud
,
Edge odd graceful labeling of some path and cycle related graphs
,
AKCE International Journal of Graphs and Combinatorics
,
14
178
203
(
2017
).
7.
J.A.
Gallian
,
A dynamic survey of graph labelling
,
The Electronic Journal of Combinatorics
,
17
(
2017
).
8.
J.
Ivančo
and
S.
Jendrol’
,
Total edge irregularity strength of trees
,
Discussiones Mathematicae Graph Theory
,
26
449
456
(
2006
).
9.
S.
Jendrol’
,
J.
Misšuf
and
R.
Soták
,
Total edge irregularity strength of complete graphs and complete bipartite graphs
,
Elec. Notes Discrete Math.
,
28
281
285
(
2007
).
10.
P.
Jeyanthi
and
S.
Philo
,
Odd harmonious labeling of some new families of graphs
,
Electronic Notes in Discrete Mathematics
,
48
165
168
(
2015
).
11.
P.
Jeyanthi
and
K.J.
Daisy
,
Zk-Magic labeling of open star of graphs
,
Bulletin of The International Mathematical Virtual Institute
,
7
243
255
(
2017
).
12.
S.P.
Lo
,
On edge graceful labelings of graphs
,
Congr. Numer.
50
231
241
(
1985
).
13.
R.W.
Putra
and
Y.
Susanti
,
On total edge irregularity strength of centralized uniform theta graphs
,
AKCE International Journal of Graphs and Combinatorics
,
15
(
1
)
7
13
(
2018
).
14.
R.W.
Putra
, R.W. and
Y.
Susanti
,
The total edge irregularity strength of uniform theta graphs
,
IOPScience Journal of Physics: Conference Series
, 2018 J. Phys.: Conf. Ser.
1097
012069
15.
L.
Ratnasari
and
Y.
Susanti
,
Total edge irregularity strength of ladder related graphs
,
Asian-European Journal of Mathematics
, doi:.
16.
A.
Solairaju
and
K.
Chithra
,
Edge-odd graceful graphs
,
Electronic Notes in Discrete Mathematics
,
33
15
20
(
2009
).
17.
W.D.
Wallis
,
Magic graphs
, (
2001
)
Springer
,
New York
.
This content is only available via PDF.