In this paper the environmental impact of a solid-state caloric heat pump was evaluated. The system employs solid-state materials as refrigerants, exhibiting caloric effects based on external fields of different natures (magnetocaloric, electrocaloric, mechanocaloric). Such technology is accounted among the Not-In-Kind cooling technologies arisen as alternative to the well-established vapor compression-based systems. To this hope a TEWI analysis is performed on the caloric heat pump and the environmental impact, depending on the caloric materials employed, is compared with a Vapor Compression heat pumping system. The results show that for almost all the mechanocaloric materials tested, with respect to the VC plant, a reduction in terms of TEWI belonging to [-75; -40] % was detected.

1.
Montreal Protocol on substances that deplete the ozone layer
,
United Nation Environment Program (UN)
,
New York, NY, USA
(
1987
).
2.
Kyoto Protocol to the United Nation Framework Convention on Climate Change
,
Kyoto, JPN
(
1997
).
3.
E.A.
Heath
.
Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer (Kigali Amendment
).
International Legal Materials
56
(
1
),
193
205
(
2017
).
4.
A.
Greco
,
R.
Mastrullo
and
A.
Palombo
.
R407C as an alternative to R22 in vapour compression plant: an experimental study
.
International journal of energy research
21
(
12
),
1087
1098
(
1997
).
5.
C.
Aprea
and
A.
Greco
.
An experimental evaluation of the greenhouse effect in R22 substitution
.
Energy conversion and management
39
(
9
),
877
887
(
1998
).
6.
A.
Greco
and
G. P.
Vanoli
.
Flow boiling heat transfer with HFC mixtures in a smooth horizontal tube. Part II: Assessment of predictive methods
.
Experimental Thermal and Fluid Science
29
(
2
),
199
208
(
2005
).
7.
C.
Aprea
,
A.
Greco
,
A.
Maiorino
, and
C.
Masselli
.
The drop-in of HFC134a with HFO1234ze in a household refrigerator
.
International Journal of Thermal Sciences
127
,
117
125
(
2018
).
8.
J.S.
Brown
and
P.A.
Domanski
.
Review of alternative cooling technologies
.
Appl. Therm. Eng.
64
(
1-2
),
252
262
(
2014
).
9.
D.R.
Brown
,
T.B.
Stout
,
J.A.
Dirks
, and
N.
Fernandez
.
The prospects of alternatives to vapor compression technology for space cooling and food refrigeration applications
.
Energy Engineering
109
(
6
),
7
20
(
2012
).
10.
A.
Kitanovski
,
U.
Plaznik
,
U.
Tomc
and
A.
Poredoš
.
Present and future caloric refrigeration and heat-pump technologies
.
International Journal of Refrigeration
57
,
288
298
(
2015
).
11.
C.
Aprea
,
A.
Greco
,
A.
Maiorino
, and
C.
Masselli
.
Solid-state refrigeration: A comparison of the energy performances of caloric materials operating in an active caloric regenerator
.
Energy
165
,
439
455
(
2018
).
12.
X.
Moya
,
S.
Kar-Narayan
, and
N. D.
Mathur
.
Caloric materials near ferroic phase transitions
.
Nat. Mat.
,
13
(
5
),
439
(
2014
).
13.
V. K.
Pecharsky
, and
K. A.
Gschneidner
 Jr.
Magnetocaloric effect and magnetic refrigeration
.
J. of Magn. and Magn. Mat.
200
(
1-3
),
44
56
(
1999
).
14.
C.
Aprea
,
A.
Greco
,
A.
Maiorino
, and
C.
Masselli
.
Electrocaloric refrigeration: an innovative, emerging, eco-friendly refrigeration technique
.
IOP Conf. Series: Journal of Physics: Conf. Series
796
012019
(
2017
).
15.
J.
Tušek
,
K.
Engelbrecht
,
R.
Millán-Solsona
,
L.
Mañosa
,
E.
Vives
,
L. P.
Mikkelsen
and
N.
Pryds
.
The elastocaloric effect: a way to cool efficiently
.
Adv. En. Mat.
5
(
13
) (
2015
).
16.
T.
Strässle
and
A.
Furrer
.
Cooling by adiabatic (DE) pressurization-the barocaloric effect
.
Int. J. of High Pressure Res.
17
(
3-6
),
325
333
(
2000
).
17.
C.
Aprea
,
A.
Greco
,
A.
Maiorino
and
C.
Masselli
.
The environmental impact of solid-state materials working in an active caloric refrigerator compared to a vapor compression cooler
.
Int. J. of H. and Techn.
36
(
4
),
1155
1162
(
2018
).
18.
C.
Aprea
,
A.
Greco
,
A.
Maiorino
and
C.
Masselli
.
A comparison between electrocaloric and magnetocaloric materials for solid state refrigeration
.
Int. J. of H. and Techn.
35
(
1
),
225
234
(
2017
).
19.
T.
Kawanami
,
S.
Hirano
,
K.
Fumoto
and
S.
Hirasawa
.
Evaluation of fundamental performance on magnetocaloric cooling with active magnetic regenerator
.
Appl. Therm. Eng.
31
(
6-7
),
1176
1183
(
2011
).
20.
C.
Aprea
,
A.
Greco
,
A.
Maiorino
and
C.
Masselli
.
A comparison between different materials in an active electrocaloric regenerative cycle with a 2D numerical model
.
Int. J. of Refrig.
69
,
369
382
(
2016
).
21.
U.
Plaznik
,
M.
Vrabelj
,
Z.
Kutnjak
,
B.
Malič
,
B.
Rožič
,
A.
Poredoš
and
A.
Kitanovski
.
Numerical modelling and experimental validation of a regenerative electrocaloric cooler
.
Int. J. of Refrig.
98
,
139
149
(
2019
).
22.
C.
Aprea
,
A.
Greco
,
A.
Maiorino
and
C.
Masselli
.
Energy performances and numerical investigation of solid-state magnetocaloric materials used as refrigerant in an active magnetic regenerator
.
Therm. Sc. and Eng. Prog.
6
,
370
379
(
2018
).
23.
C.
Aprea
,
A.
Greco
,
A.
Maiorino
and
C.
Masselli
.
A comparison between electrocaloric and magnetocaloric materials for solid state refrigeration
.
Int. J. of H. and Techn.
35
(
1
),
225
234
(
2017
).
24.
C.
Aprea
,
A.
Greco
and
A.
Maiorino
.
A dimensionless numerical analysis for the optimization of an active magnetic regenerative refrigerant cycle
.
International Journal of Energy Research
37
(
12
),
1475
1487
(
2013
).
25.
C.
Aprea
,
A.
Greco
, and
A.
Maiorino
.
The use of the first and of the second order phase magnetic transition alloys for an AMR refrigerator at room temperature: a numerical analysis of the energy performances
.
Energy conversion and management
70
,
40
55
(
2013
).
26.
A.
Kitanovski
,
J.
Tušek
,
U.
Tomc
,
U.
Plaznik
,
M.
Ožbolt
and
A.
Poredoš
. Overview of existing magnetocaloric prototype devices. In
Magnetocaloric Energy Conversion
(pp.
269
330
).
Springer
,
Cham
(
2015
).
27.
K.
Engelbrecht
,
J.
Tušek
,
D.
Eriksen
,
T.
Lei
,
C.Y.
Lee
, and
N.
Pryds
.
A regenerative elastocaloric device: experimental results
.
Journal of Physics D: Applied Physics
,
50
(
42
),
424006
(
2017
).
28.
B.
Yu
,
M.
Liu
,
P.W.
Egolf
and
A.
Kitanovski
.
A review of magnetic refrigerator and heat pump prototypes built before the year 2010
.
International Journal of Refrigeration
33
(
6
),
1029
1060
(
2010
).
29.
P.
Blumenthal
, and
A.
Raatz
.
Classification of electrocaloric cooling device types
.
Europhys. Lett.
115
(
1
),
17004
(
2016
).
30.
C.
Aprea
,
A.
Greco
and
A.
Maiorino
.
An application of the artificial neural network to optimise the energy performances of a magnetic refrigerator
.
International Journal of Refrigeration
82
,
238
251
(
2017
).
31.
C.
Zimm
,
A.
Boeder
,
B.
Mueller
,
K.
Rule
and
S.L.
Russek
.
The evolution of magnetocaloric heat-pump devices
.
MRS Bull.
43
,
274
279
(
2018
).
32.
X.
Chen
,
W.
Xu
,
B.
Lu
,
T.
Zhang
,
Q.
Wang
and
Q. M.
Zhang
.
Towards electrocaloric heat pump—A relaxor ferroelectric polymer exhibiting large electrocaloric response at low electric field
.
Appl. Phys. Lett.
113
(
11
),
113902
(
2018
).
33.
X.
Moya
,
E.
Defay
,
V.
Heine
,
N.D.
Mathur
.
Too cool to work. Nat. Phys.
11
(
3
),
202
(
2015
).
34.
M. A.
Benedict
,
S. A.
Sherif
,
D. G.
Beers
and
M. G.
Schroeder
.
Design and performance of a novel magnetocaloric heat pump
.
Science and Technology for the Built Environment
22
(
5
),
520
526
(
2016
).
35.
D.
Vuarnoz
,
A.
Kitanovski
,
M.
Diebold
,
F.
Gendre
and
P.W.
Egolf
.
A magnetic heat pump with porous magneto caloric material
.
Phys. St. Sol. C
4
(
12
),
4552
4555
(
2007
).
36.
S. J.
Smullin
,
Y.
Wang
, and
D. E.
Schwartz
.
System optimization of a heat-switch-based electrocaloric heat pump
.
Applied Physics Letters
107
(
9
),
093903
(
2015
).
37.
J.
Tušek
,
K.
Engelbrecht
,
D.
Eriksen
,
S.
Dall’Olio
, and
N.
Pryds
.
A regenerative elastocaloric heat pump
.
Nat. En.
1
(
10
),
16134
(
2016
).
38.
C.
Aprea
,
A.
Greco
,
A.
Maiorino
,
C.
Masselli
and
A.
Metallo
.
HFO1234ze as drop-in replacement for R134a in domestic refrigerators: an environmental impact analysis
.
Energy Procedia
101
,
964
971
(
2016
).
39.
C.
Aprea
,
A.
Greco
,
A.
Maiorino
and
C.
Masselli
.
A comparison between rare earth and transition metals working as magnetic materials in an AMR refrigerator in the room temperature range
.
Appl. Therm. Eng.
91
,
767
777
(
2015
).
40.
B.
Peng
,
H.
Fan
, and
Q.
Zhang
.
A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature
.
Adv. Fun. Mat.
23
(
23
),
2987
2992
(
2013
).
41.
Y.
Zhao
,
X.
Hao
and
Q.
Zhang
.
A giant electrocaloric effect of a Pb 0.97 La 0.02 (Zr 0.75 Sn 0.18 Ti 0.07) O3 antiferroelectric thick film at room temperature
.
Journal of Materials Chemistry C
3
(
8
),
1694
1699
(
2015
).
42.
Gorev
,
M. V.
,
Bogdanov
,
E. V.
,
Flerov
,
I. N.
,
Kocharova
,
A. G.
, &
Laptash
,
N. M.
(
2010
).
Investigation of thermal expansion, phase diagrams, and barocaloric effect in the (NH4)2 WO2 F4 and (NH4)2 MoO2 F4 oxyfluorides
.
Physics of the Solid State
,
52
(
1
),
167
175
.
43.
Wu
R. R.
,
Bao
L. F.
,
Hu
F. X.
,
Wu
H.
,
Huang
Q.Z.
,
Wang
J.
,
Dong
X.L.
,
Li
G. N.
,
Sun
J. R.
,
Shen
F. R.
,
Zhao
T. Y.
,
Zheng
X. Q.
,
Wang
L. C.
,
Liu
Y.
,
Zuo
W.L.
,
Zhao
Y. Y.
,
Zhang
M.
,
Wang
X.C.
,
Jin
C.Q.
,
Rao
G. H.
,
Han
X. F.
,
Shen
B. G.
. (
2015
).
Giant barocaloric effect in hexagonal Ni 2 In-type Mn-Co-Ge-In compounds around room temperature
.
Scientific reports
,
5
,
18027
.l
44.
Imamura
,
W.
,
Usuda
,
E. O.
,
Paixão
,
L. S.
,
Bom
,
N. M.
,
Gomes
,
A. M.
, &
Carvalho
,
A. M. G.
(
2017
).
Supergiant barocaloric effects in acetoxy silicone rubber around room temperature
. arXiv preprint arXiv:1710.01761.
45.
E. O.
Usuda
,
N. M.
Bom
,
A. M. G.
Carvalho
.
Large barocaloric effects at low pressures in natural rubber
.
European Polymer Journal
92
,
287
293
(
2017
).
46.
C.
Aprea
,
G.
Cardillo
,
A.
Greco
,
A.
Maiorino
and
C.
Masselli
.
A comparison between experimental and 2D numerical results of a packed-bed active magnetic regenerator
.
Appl. Therm. Eng.
90
,
376
383
(
2015
).
47.
C.
Aprea
,
A.
Greco
,
A.
Maiorino
and
C.
Masselli
.
Analyzing the energetic performances of AMR regenerator working with different magnetocaloric materials: Investigations and viewpoints
.
Int. J. of H. and Techn.
35
,
S383
S390
(
2017
).
This content is only available via PDF.