Improving energy efficiency in every sector (e.g., building, industrial, transport) is a priority to reduce the effects of the human impact on the environment. Among the techniques which can be applied, waste heat recovery has received growing interest in the last few decades. Normally, waste heat can be utilized for power production or process heating. In the first case, recovery plants based on Organic Rankine Cycles (ORCs) are a common solution. Even though ORC systems are considered a consolidated technology, their application is not always economically convenient, especially for small- and medium-scale plants. This is due to the low temperature of the heat source made available to the ORC system, which inevitably implies a low thermodynamic cycle efficiency. Therefore, given a reference thermal source available for the ORC plant, particular attention has to be paid to the layout arrangement, in particular to the selection of some key components among which there is the expander. The paper deals with the comparative analysis of three small-scale plant layouts designed for the same reference waste heat source. In particular, three different expanders have been taken into consideration for electrical power production <100 kWe, i.e., 1) one-stage radial turbine, 2) twin-screw expander, and 3) two-stage radial turbine. Each expander imposes several constraints on the cycle and, consequently, the overall ORC plant performance is affected by the preliminary choice of such a machine. The three cases have been preliminarly designed and comparatively analyzed. Namely, they were compared from the view point of economic performance, to highlight potential trade-offs between improved thermodynamic efficiency and resulting costs. Moreover, a life cycle analysis completed the comparison by evaluating the overall environmental impact of the three cases in order to establish their benefits and drawbacks in terms of sustainable electricity production.

1.
International Energy Agency
,
World Energy Outlook 2018
,
2018
.
2.
K.
Rahbar
,
S.
Mahmoud
,
R. K.
Al-Dadah
,
Nima
Moazami
,
Seyed A.
Mirhadizadeh
,
Energy Convers. Manag.
134
,
135
155
(
2017
).
3.
D.
Ziviani
,
A.
Beyene
,
M.
Venturini
,
Appl. Energy
121
,
79
95
(
2014
).
4.
L.
Tocci
,
T.
Pal
,
I.
Pesmazoglou
,
B.
Franchetti
,
Energies
10
(
4
),
1
26
(
2017
).
5.
V.
Pethurajan
,
S.
Sivan
,
G. C.
Joy
,
Energy Convers. Manag.
166
,
474
488
(
2018
).
6.
Siemens power generation division
,
Waste heat recovery with organic Rankine cycle technology
,
2014
, see http://www.energy.siemens.com/mx/pool/hq/power-generation/steam-turbines/downloads/brochure-orcorganic-rankine-cycle-technology_EN.pdf>.
7.
K.
Rahbar
,
S.
Mahmoud
,
R. K.
Al-Dadah
,
N.
Moazami
,
S A.
Mirhadizadeh
,
Energy Convers. Manag.
134
,
135
155
(
2017
).
8.
S.
Lecompte
,
H.
Huisseune
,
M.
van den Broek
,
B.
Vanslambrouck
,
M.
De Paepe
,
Renew Sust Energ Rev
47
,
448
461
(
2015
).
9.
H.
Chen
,
D. Yogi
Goswami
,
E. K.
Stefanakos
,
Renew Sust Energ Rev
14
,
3059
3067
(
2010
).
10.
P.
Linke
,
A. I.
Papadopoulos
,
P.
Seferlis
,
Energies
8
,
4755
4801
(
2015
).
11.
G.
Di Lorenzo
,
P.
Pilidis
,
J.
Witton
,
D.
Probert
, in
Computer Aided Chemical Engineering (Volume 30)
, edited by
I. D. Lockhart
Bogle
and
M.
Fairweather
(
Elsevier
,
London
,
2012
), p.
492
12.
M.
Maccapani
,
R.S.R.
Khan
,
P.
Burgmann
,
G.
Di Lorenzo
,
S.O.T.
Ogaji
,
P.
Pilidis
,
I.
Bennett
,
J Eng Gas Turb Power
136,
022001
(
2014
).
13.
V.
Lemort
,
A.
Legros
, in ORC Power Systems: Technologies and Applications, edited by
E.
Macchi
and
M.
Astolfi
(
Woodhead Publishing
,
2017
) p.
361
14.
G.
Qiu
,
H.
Liu
,
S.
Riffat
,
Appl. Therm. Eng.
31
,
3301
3307
(
2011
).
15.
V. Lemort
,
V.
,
Guillaume
,
L.
,
Legros
,
A.
,
Declaye
,
S.
,
Quoilin
,
S.
,
Proceedings of the the 3rd International Conference on Microgeneration and Related Technologies
,
2013
.
16.
S. W.
Hsu
,
H.W.D.
Chiang
,
C.W.
Yen
,
Energies
7
,
6172
6185
(
2014
).
17.
M.
Astolfi
,
Proceedings of the International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2014
,
2015
,
Energy Procedia
, vol.
69
, p.
1100
.
18.
O.E.
Baljè
,
J. Eng. Power
84
,
83
102
(
1962
).
19.
A.
Giovannelli
,
Proceedings of the ICEER 2018 -5th International Conference on Energy and Environment Research
,
2018
,
Energy Procedia
, Vol.
153
, p
10
.
20.
A.
Giovannelli
,
E.M.
Archilei
,
C.
Salvini
,
Proceedings of the ICEER2019 – 6th International Conference on Energy and Environment Research
, Aveiro PT 2019, Energy Reports (to be published)
21.
C.
Greco
, Thesis in Mechanical Engineering,
Università degli studi ROMA TRE, Roma
,
2018
.
22.
A.
Brunner
,
Pump, Compressors and Process Components
120
, p.
126
(
2012
).
23.
NIST Reference Fluid Thermodynamic and Transport Properties – REFPROP Version 7.0
24.
K.
Thulukkanam
,
Heat Exchanger Design Handbook
(
CRC Press
,
Boca Raton, FL
,
2013
)
25.
TEMA
. 9th edition
TEMA standards. s.l. : TEMA
,
2007
26.
R.
Sinnott
,
Chemical Engineering Design
– Volume
6
(
Elsevier
,
Oxford, UK
,
2005
)
27.
R. K.
Shah
,
Fundamental of Heat Exchanger Design
(
John Wiley & Sons
,
Hoboken, NJ
,
2003
)
28.
R.
Turton
,
R. C.
Bailie
,
W. B.
Whiting
,
J. A.
Shaeiwitz
,
D.
Bhattacharyya
,
Analysis, Synthesis, and Design of Chemical Processes
(
Pearson
,
US
,
2013
).
29.
M.
Astolfi
,
Tesi di Dottorato, Politecnico di Milano, Milano
,
2014
.
30.
M.
Ramirez
,
M.
Epelde
,
M. Gomezde
Arteche
,
A.
Panizza
,
A.
Hammerschmid
,
M.
Baresi
,
N.
Monti
,
Proceedings of the 4th International Seminar on Organic Rankine Cycle Power Systems
,
2017
,
Energy Procedia
, Vol.
129
, p.
535
.
31.
M.
Astolfi
,
E.
Martelli
,
L.
Pierobon
, in ORC Power Systems: Technologies and Applications, edited by
E.
Macchi
and
M.
Astolfi
(
Woodhead Publishing
,
2017
) p.
173
32.
T.
Onabanjo
,
G.
Di Lorenzo
,
Proceedings of the ASME 2015 9th International Conference on Energy Sustainability
,
San Diego USA
,
2015
, Paper No. ES2015-49654.
33.
T.O.
Somorin
,
G.
Di Lorenzo
,
A.J.
Kolios
,
Renew Energ
113
,
966
979
(
2017
).
34.
ISO (International Organization for Standardization) Environmental Management –
Life Cycle Assessment – Principles and Framework, International Organization for Standardization
,
Geneva, Switzerland
(
2006
), Report No.: ISO 14040
35.
ISO (International Organization for Standardization) Environmental Management
.
Life Cycle Assessment Requirements and Guidelines, International Organization for Standardization
,
Geneva, Switzerland
(
2006
), Report No.: ISO 14044
36.
A.
Musacchio
,
M.
Vicarelli
,
S.
Colantoni
,
P.
Bartocci
,
F.
Fantozzi
,
Proceedings of the ASME Turbo Expo 2019
,
Phoenix USA
,
2019
, Vol.
3
, Paper No. GT2019-91185.
37.
A.
Musacchio
,
M.
Vicarelli
,
S.
Colantoni
,
P.
Bartocci
,
F.
Fantozzi
,
Proceedings of the ASME Turbo Expo 2019
,
Phoenix USA
,
2019
, Vol.
3
, Paper No. GT2019-91191.
39.
P.
Bartocci
,
G.
Bidini
,
P.
Laranci
,
M.
Zampilli
,
M.
D’Amico
,
F.
Fantozzi
,
Proceedings of the ASME Turbo Expo 2018
,
Oslo Norway
,
2018
, Vol.
3
, Paper No. GT2018-76856.
40.
M.
Zampilli
,
G.
Bidini
,
P.
Laranci
,
M.
D’Amico
,
P.
Bartocci
,
F.
Fantozzi
,
Proceedings of the ASME Turbo Expo 2017
,
Charlotte USA
,
2017
, Vol.
3
, Paper N. GT2017-64947.
This content is only available via PDF.