The curvature dependence of the surface tension is important for the description of nucleation phenomena and fluids in microcapillaries or nanopores. The dependences are used in researching of cavitation phenomena. There are some theoretical models based on the Gibbs−Tolman−Koening−Buff (GTKB) equation. These models use so-called Tolman length, a parameter of the size dependence of surface tension. Different experiments and methods of molecular dynamics are used to estimate the curvature dependence of surface tension of water and to calculate the Tolman length for it. The Tolman length seems to have a negative value. But very often the authors do not calculate with the uncertainty of the surface tension measurement for a plane surface of separation. We will analyze the influence of the uncertainty and we will discuss the sensitivity of different formulas of the size dependence of surface tension of water to the uncertainty.

1.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Dover Publications
,
New York
,
2003
).
2.
P. G.
Gennes
,
Rev. Mod. Phys.
57
,
827
863
(
1985
).
3.
A. W.
Adamson
,
Physical Chemistry of Surfaces
(
John Wiley & Sons
,
New York
,
1990
) 5
th
ed.
4.
P. G.
Gennes
,
F.
Brochard–Wyart
and
D.
Quere
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls Waves
(
Springer-Verlag
,
New York
,
2004
).
5.
J.
Kalová
and
R.
Mareš
, “
The temperature dependence of the surface tension of water
” in
17th Conference of Power System and Engineering, Thermodynamics and Fluid Mechanics – 2018, AIP Conference Proceedings 2047
, edited by
L.
Richter
 et al (
American Institute of Physics
,
Melville, NY
,
2018
).
6.
J.
Kalová
and
R.
Mareš
,
Int. J. Thermophys.
36
,
1396
1404
(
2015
).
7.
J.
Kalová
and
R.
Mareš
,
Int. J. Thermophys.
36
,
2862
2868
(
2015
).
8.
J. W.
Gibbs
,
Collected Works
(
Longmans Green and Company
,
New York
,
1928
).
9.
R. C.
Tolman
,
J. Chem. Phys.
16
,
758
774
(
1948
).
10.
R. C.
Tolman
,
J. Chem. Phys.
17
,
333
337
(
1949
).
11.
S. S.
Rekhviahvili
and
E. V.
Kishtikova
,
Tech. Phys.
56
,
148
152
(
2011
).
12.
Y. A.
Lei
,
T.
Bykov
,
S.
Yoo
, and
X. Ch.
Zeng
,
J. Am. Chem. Soc.
127
,
15346
15347
(
2005
).
13.
M. H.
Factorovich
,
V.
Molinero
, and
D. A.
Scherlis
,
J. Am. Chem. Soc.
136
,
4508
4514
(
2014
).
14.
R. C.
Tolman
,
J. Chem. Phys.
17
,
118
127
(
1949
).
15.
V.
Holten
,
D. G.
Labetski
and
M. E. H.
van Dongen
,
J. Chem. Phys.
123
,
104505
(
2005
).
16.
M. E. M.
Azouzi
,
C.
Ramboz
,
J.–F.
Lenain
and
F.
Caupin
,
Nat. Phys.
9
,
38
41
(
2013
).
17.
A. A.
Homman
,
E.
Bourasseau
,
G.
Stoltz
,
P.
Malfreyt
,
L.
Strafella
,
A.
Ghoufi
,
J. Chem. Phys.
140
,
034110
(
2014
).
18.
H. M.
Lu
and
Q.
Jiang
,
Langmuir
21
,
779
781
(
2005
).
19.
K. K.
Tanaka
,
H.
Tanaka
,
R.
Angélil
, and
J.
Diemand
,
Phys. Rev. E
92
,
022401
(
2015
).
20.
M. N.
Joswiak
,
N.
Duff
,
M. F.
Doherty
and
B.
Peters
,
J. Phys. Chem. Lett.
4
,
4267
4271
(
2013
).
21.
W.
Xiao–Song
and
Z.
Ru–Zeng
,
Chin. Phys. B
22
,
036801
(
2013
).
22.
E. M.
Blokhuis
and
J.
Kuipers
,
J. Chem. Phys.
124
,
074701
(
2006
).
23.
M.
Iwamatsu
,
J. Phys.: Condens. Matter
6
,
L173
L177
(
1994
).
24.
Ø.
Wilhelmsen
,
D.
Bedeaux
and
D.
Reguera
,
J. Chem. Phys.
142
,
171103
(
2015
).
25.
F.
Sedlmeier
and
R. R.
Netz
,
J. Chem. Phys.
137
,
135102
(
2012
).
26.
J.
Kalová
and
R.
Mareš
,
Tolman length for water nanodroplets
, in
15th Conference on Power System Engineering, Thermodynamics & Fluid Flow – ES
2016
,
June 2016
,
Pilsen
.
27.
Revised Release on Surface Tension of Ordinary Water Substance, IAPWS (
2014
) http://www.iapws.org/relguide/Surf-H2O-2014.pdf
28.
H.
Duan
,
Z.
Cui
,
Y.
Xue
,
Q.
Fu
,
X.
Chen
,
R.
Zhang
,
Langmuir
34
,
8792
8797
(
2018
).
29.
S. M. A.
Malek
,
P. H.
Poole
,
I.
Saika-Voivod
,
J. Chem. Phys.
150
,
234507
(
2019
).
30.
S.
Kim
,
D.
Kim
,
J.
Kim
,
S.
An
,
W.
Jhe
,
Physical Review X
8
,
041046
(
2018
).
This content is only available via PDF.