In this paper, we consider the linear ill-posed inverse problem with noisy data in the statistical learning setting. The Tikhonov regularization scheme in Hilbert scales is considered in the reproducing kernel Hilbert space framework to reconstruct the estimator from the random noisy data. We discuss the rates of convergence for the regularized solution under the prior assumptions and link condition. For regression functions with smoothness given in terms of source conditions the error bound can explicitly be established.

1.
Nachman
Aronszajn
.
Theory of reproducing kernels
.
Trans. Am. Math. Soc.
,
68
:
337
404
,
1950
.
2.
Gilles
Blanchard
and
Nicole
Mucke
.
Optimal rates for regularization of statistical inverse learning problems
.
Found. Comput. Math.
,
18
(
4
):
971
1013
,
2018
.
3.
Albrecht
Bottcher
,
Bernd
Hofmann
,
Ulrich
Tautenhahn
, and
Masahiro
Yamamoto
.
Convergence rates for Tikhonov regularization from different kinds of smoothness conditions
.
Appl. Anal.
,
85
(
5
):
555
578
,
2006
.
4.
Heinz W.
Engl
,
Martin
Hanke
, and
Andreas
Neubauer
. Regularization of inverseproblems, volume
375
.
Math. Appl
.,
Kluwer Academic Publishers Group
,
Dordrecht, The Netherlands
,
1996
.
5.
Peter
Mathe
and
Ulrich
Tautenhahn
.
Interpolation in variable Hilbert scales with application to inverse problems
.
Inverse Probl.
,
22
(
6
):
2271
2297
,
2006
.
6.
Peter
Mathe
and
Ulrich
Tautenhahn
.
Error bounds for regularization methods in Hilbert scales by using operator monotonicity
.
Far EastJ. Math. Sci.
,
24
(
1
):
1
,
2007
.
7.
M. Thamban
Nair
,
Sergei V.
Pereverzev
, and
Ulrich
Tautenhahn
.
Regularization in Hilbert scales under general smoothing conditions
.
Inverse Probl.
,
21
(
6
):
1851
1869
,
2005
.
This content is only available via PDF.