In this paper, we have generalized a new summability factor theorem for infinite series involving quasi power increasing sequences. Some new results are also deduced.

1.
N. K.
Bari
and
S.B
Stecĭkin
,
Best approximation and differential properties of two conjugate functions
.
Trudy. Moskov. Mat. Obsĭcĭ
. (in Russian)
5
,
483
522
(
1956
).
2.
H.
Bor
,
On two summability methods
.
Math. Proc. Cambridge Philos Soc
.
97
,
147
149
(
1985
).
3.
H.
Bor
,
Quasi-monotone and almost increasing sequences and their new applications
.
Abstr. Appl. Anal
. Art. ID 793548
6
pp. (
2012
).
4.
H.
Bor
,
On absolute weighted mean summability of infinite series and Fourier series
.
Filomat
30
,
2803
2807
(
2016
).
5.
H.
Bor
,
Some new results on absolute Riesz summablity of infinite series and Fourier series
.
Positivity
20
,
599
605
(
2016
).
6.
H.
Bor
,
An Application of power increasing sequences to infinite series and Fourier series
.
Filomat
31
,
1543
1547
(
2017
).
7.
H.
Bor
,
Absolute weighted arithmetic mean summability factors of infinite series and trigonometric Fourier series
.
Filomat
31
,
4963
4968
(
2017
).
8.
H.
Bor
and
L.
Debnath
,
Quasi β-power increasing sequences
,
Int. J. Math. Math. Sci
.
44
,
2371
2376
(
2004
).
9.
E.
Cesàro
,
Sur la multiplication des sèries
.
Bull. Sci. Math
.
14
,
114
120
(
1890
).
10.
T. M.
Flett
,
On an extension of absolute summability and some theorems of Littlewood and Paley
.
Proc. Lond. Math. Soc
.
7
,
113
141
(
1957
).
11.
S. M.
Mazhar
,
On |C, 1|k summability factors of infinite series
,
Indian J. Math
.
14
,
45
48
(
1972
).
12.
S. M.
Mazhar
,
Absolute summability factors of infinite series
.
Kyungpook Math. J
.
39
,
67
73
(
1999
).
13.
W. T.
Sulaiman
,
Inclusion theorems for absolute matrix summability methods of an infinite series. IV
.
Indian J. Pure Appl. Math
.
34
,
1547
1557
(
2003
).
14.
W. T.
Sulaiman
,
Extension on absolute summability factors of infinite series
.
J. Math. Anal. Appl
.
322
,
1224
1230
(
2006
).
15.
N.
Tanovicĭ-Miller
,
On strong summability
.
Glas. Mat. Ser III
14
, (
34
)
87
97
(
1979
).
16.
Ş.
Yıldız
,
A matrix application on absolute weighted arithmetic mean summability factors of infinite series
,
Tbilisi Mathematical Journal
,
11
,
59
65
(
2018
).
17.
Ş.
Yıldız
,
A New Note on General Matrix Application of Quasi-monotone Sequences
,
Filomat
32
,
3709
3715
(
2018
).
18.
Ş.
Yıldız
,
On the Absolute Matrix Summability Factors of Fourier Series
,
Math. Notes
.
103
,
297
303
(1–2) (
2018
).
This content is only available via PDF.