Positron Annihilation Lifetime Spectroscopy (PALS) allows examining structure of materials in nano and sub-nanometer scale. This technique is based on the lifetime and intensity of ortho-positronium atoms in free volumes of given structures. It is mostly used for studies in material sciences, but it can also be used for in vivo imaging of the cell morphology as proposed in [1], [2]. Cancer cells are characterized by an altered macro structure in comparison to normal cells, thus the main objective of these studies is to compare if these differences can be detected on sub-nanometer level with PALS technique. First studies on standard PAL spectrometers conducted by Jean [3],[4] and J-PET collaboration [5], [6], give promising results showing differences between normal and cancer tissues.

This perspective will allow for simultaneous determination of early and advanced stages of carcinogenesis, by observing changes in biomechanical parameters between normal and tumour cells, and standard PET examination, which can be performed with the Jagiellonian Positron Emission Tomograph (J-PET), a multi-purpose detector used for investigations with positronium atoms in life-sciences as well as for development of medical diagnostics. Results of first PALS measurement of cardiac myxoma, with J-PET detector is presented in this paper. Obtained o-Ps lifetime for tumor tissue is equal to 2.03(01)[ns] and its intensity 25.7(1)%.

1.
P.
Moskal
 et al,
Phys. Med. Biol.
64
055017
(
2019
)
2.
P.
Moskal
 et al, Patent No: US 9851456 (
2017
); PL 227658 (2013); PCT/EP2014/068374.
3.
Y. C.
Jean
 et al,
Applied Surface Science
252
,
3166
(
2006
).
4.
Y. C.
Jean
 et al,
Radiation Physics and Chemistry
76
,
70
(
2007
).
5.
B.
Jasińska
 et al,
Acta Phys. Polon. B
48
,
1737
1747
(
2017
).
6.
B.
Jasińska
 et al,
Acta Phys. Polon. A.
132
,
1556
1558
(
2017
).
7.
S. W.
Hel
 et al,
Science
316
(
5828
)
1153
, (
2007
).
8.
M.
Rust
 et al,
Nature Methods
3
(
10
):
793
, (
2006
).
9.
P.
Moskal
 et al,
Phys. Med. Biol.
61
,
2025
2047
(
2016
).
10.
L.
Raczyński
 et al,
Phys. Med. Biol.
62
5076
5097
(
2017
).
11.
P.
Kowalski
 et al,
Phys. Med. Biol.
63
165008
(
2018
).
12.
A. I.
Baba
,
C.
Catoi
,
Comparative Oncology
,
The Publishing House of the Romanian Academy
(
2007
).
13.
B.
Alberts
 et al,
Molecular Biology of the Cell
, 6th edition, ISBN: 9780815344643 (
2015
).
14.
L. E.
Wold
 et al,
Am J Pathol.
101
(
1
):
219
40
(
1980
);
15.
S. J.
Tao
,
J. Chem. Phys.
56
,
5499
(
1972
).
16.
M.
Eldrup
 et al,
Chem. Phys.
63
,
51
(
1981
).
17.
G.
Consolati
,
F.
Quasso
,
Materials Chemistry and Physics
101
,
264
(
2007
).
18.
L.
Guang
,
Y. C.
Jean
 et al,
Phys. Stat. Sol. (c)
4
, No.
10
,
39123915
(
2007
).
19.
Y. C.
Jean
 et al,
J. Am. Chem. Soc.
99
16235
(
1977
)
20.
R.
Pietrzak
 et al,
Nukleonika
58
199202
(
2013
);
21.
R. M.
Yas
 et al,
Iraqi J. Phys.
10
7782
(
2012
);
22.
E.
Axpe
 et al,
PLoS One
,
9
(
1
):
e83838
, (
2014
).
23.
E.
Kubicz
 et al,
Nukleonika
60
,
749
753
(
2015
).
24.
D.
Kamińska
 et al,
Eur. Phys. J. C
76
,
445
(
2016
).
25.
G.
Korcyl
 et al,
IEEE Transactions On Medical Imaging
,
37
:
11
,
2526
(
2018
);
26.
A.
Gajos
 et al,
Nucl. Instrum. Meth. A
819
,
54
59
(
2016
);
27.
K.
Dulski
 et al,
Acta Phys. Polon. B
48
no.
10
,
1611
(
2017
);
28.
K.
Dulski
 et al,
Hyperfine Interact
239
:
40
(
2018
);
29.
M.
Pałka
 et al,
JINST
12
P08001
(
2017
);
This content is only available via PDF.