More empiricism in modelling of option contracts is obtained when the jump-diffusion models are employed. Such models extend the standard Black-Scholes framework by adding jumps to the dynamics of underlying asset prices and enable to describe large and sudden changes in the underlying. The paper is devoted to the discontinuous Galerkin method applied to European option pricing under the Kou model where jump sizes are double exponentially distributed. The pricing function satisfies a partial integro-differential equation, which involves both integrals and derivatives of an unknown option value function. With a localization to a bounded spatial domain, the governing equation is discretized by the discontinuous Galerkin method over a finite element mesh and it is integrated in temporal variable by a semi-implicit Euler scheme, where the differential part is treated implicitly while the integral one explicitly by the composite trapezoidal rule. This approach thus leads to a sparse linear algebraic system at each time level. Finally, numerical results demonstrate the capability of the scheme presented within the reference benchmarks.

1.
F.
Black
and
M.
Scholes
, “
The pricing of options and corporate liabilities
,”
J. Polit. Econ.
81
,
637
659
(
1973
).
2.
R. C.
Merton
, “
Theory of rational option pricing
,”
Bell J. Econ.
4
,
141
183
(
1973
).
3.
R. C.
Merton
, “
Option pricing when underlying stock returns are discontinuous
,”
J. Financ. Econ.
3
,
125
144
(
1976
).
4.
R.
Cont
and
P.
Tankov
,
Financial Modelling with Jump Processes
(
Chapman & Hall/CRC press
,
Boca Raton
,
2004
).
5.
S.
Kou
, “
A jump-diffusion model for option pricing
,”
Manage. Sci.
48
,
1086
1101
(
2002
).
6.
O. E.
Barndorff-Nielsen
, “
Normal inverse Gaussian distributions and stochastic volatility modelling
,”
Scand. J. Stat.
24
,
1
13
(
1997
).
7.
E.
Eberlein
,
U.
Keller
, and
K.
Prause
, “
New insights into smile, mispricing, and value at risk: The hyperbolic model
,”
J. Bus.
71
,
371
405
(
1998
).
8.
Y.
Achdou
and
O.
Pironneau
,
Computational Methods for Option Pricing
(
SIAM
,
Philadelphia
,
2005
).
9.
A.
Itkin
,
Pricing Derivatives Under Lévy Models
(
Birkhäuser
,
New York
,
2017
).
10.
R.
Eymard
,
T.
Gallouët
, and
R.
Herbin
, “Finite volume methods,” in
Solution of Equation in Rn (Part 3), Techniques of Scientific Computing (Part 3), Handbook of Numerical Analysis
, Vol.
7
, edited by
P. G.
Ciarlet
and
J. L.
Lions
(
Elsevier
,
New York
,
2000
) pp.
713
1018
.
11.
P. G.
Ciarlet
,
The Finite Elements Method for Elliptic Problems
(
North-Holland
,
Amsterdam, New York, Oxford
,
1979
).
12.
V.
Dolejší
and
M.
Feistauer
,
Discontinuous Galerkin Method. Analysis and Applications to Compressible Flow
(
Springer, Cham
,
2015
).
13.
B.
Rivière
,
Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation
(
SIAM
,
Philadelphia
,
2008
).
14.
E. G.
Haug
,
The Complete Guide to Option Pricing Formulas
(
McGraw-Hill
,
2006
).
15.
R.
Cont
and
E.
Voltchkova
, “
A finite difference scheme for option pricing in jump diffusion and exponential Lévy models
,”
SIAM J. Numer. Anal.
43
,
1596
1626
(
2005
).
16.
Y.
Kwon
and
Y.
Lee
, “
A second-order finite difference method for option pricing under jump-diffusion models
,”
SIAM J. Numer. Anal.
49
,
2598
2617
(
2011
).
17.
J.
Hozman
and
T.
Tichý
, “
On the impact of various formulations of the boundary condition within numerical option valuation by DG method
,”
Filomat
30
,
4253
4263
(
2016
).
18.
V.
Pasheva
and
G.
Venkov
, eds.,
AMEE ’13, AIP Conference Proceedings No. 1570
(
American Institute of Physics
,
Melville, NY
,
2013
).
19.
J.
Hozman
and
T.
Tichý
, “
DG method for numerical pricing of multi-asset Asian options — the case of options with floating strike
,”
Appl. Math.
62
,
171
195
(
2017
).
20.
F.
Hecht
, “
New development in freefem++
,”
J. Numer. Math.
20
,
251
265
(
2012
).
This content is only available via PDF.