The major goal of this paper is to tune PID and PIλDδ controllers using Particle Swarm Optimization (PSO) algorithm via El-Khazali’s approach. This is the first time that such a method is employed for meeting this problem. El-Khazali’s approach is, usually, used to approximate fractional-order Laplacian operators of order α; s±α, 0 < α ≤ 1, by finite-order rational transfer functions. The significance of this approach lies in developing an algorithm that depends only on α, which enables one to synthesize both fractional-order inductors and capacitors. To illustrate the proposed design method, an objective function is presented as well as the results of using the PIλDδ controller are compared with the results of using the conventional PID controller to minimize several error functions; ITAE, IAE, ISE and ITSE. These results of such comparisons that are related to step response specifications, allow us to see the effectiveness of the best controller.

1.
I.
Podlubny
,
Fractional Differential Equations
(
Academic Press
,
San Diego
,
1999
).
2.
D.
Maiti
,
S.
Biswas
and
A.
Konar
, “
Design of a Fractional Order PID Controller Using Particle Swarm Optimization Technique
,” in
2ⁿᵈ-National Conference on Recent Trends in Information Systems (ReTIS-08)
, (
Jadavpur University
,
Kolkata, India
,
2008
).
3.
F.
Merrikh-Bayat
and
M.
Karimi-Ghartemani
,
Method for designing PIλDδ stabilisers for minimum-phase fractional-order systems
,
IET Control Theory Appl.
4
,
61
70
(
2010
).
4.
R. V.
Jain
,
M. V.
Aware
and
A. S.
Junghare
, “
Tuning of Fractional Order PID Controller Using Particle Swarm Optimization Technique for DC Motor Speed Control
,” in
1ˢᵗ-IEEE International Conference on Power Electronics: Intelligent Control and Energy Systems (ICPEICES-2016)
, (
Delhi Technological University
,
India
,
2016
).
5.
L.
Qu
,
H.
Hu
and
Y.
Huang
, “
Fractional Order PID controller based on Particle Swarm Optimization Implemented with FPGA
,” in
2010 International Conference on Artificial Intelligence and Computational Intelligence
, (
Hangzhou, China
,
2010
).
6.
Y. S.
Jin
,
Y. Q.
Chen
and
D. Y.
Xue
,
The time constant robust analysis of fractional order [proportional derivative] controller
,
IET Control Theory & Applications
5
,
164
172
, (
2011
).
7.
P. S.
Rinu
,
Design and Analysis of Optimal Fractional-Order PID Controller
,
International Journal of Applied Engineering Research
,
10
,
23000
23002
(
2015
).
8.
A.
Rajasekhar
,
S.
Das
and
A.
Abraham
, “
Fractional order PID controller design for speed control of chopper fed DC motor drive using artificial bee colony algorithm
,” in
2013 World Congress on IEEE, in Nature and Biologically Inspired Computing (NaBIC)
, (
Fargo
,
North Dakota, USA
), pp.
259
266
.
9.
M. J.
Mohamed
, and
A.
Khashan
, “
Comparison Between PID and FOPID Controllers Based on Particle Swarm Optimization
,” in
The 2ⁿᵈ-Engineering Conference of Control, Computers and Mechatronics Engineering (ECCCM2, 2014)
, (
University of Technology
,
Bagdad, Iraq
,
2014
).
10.
A.
Roy
, and
S.
Srivastava
, “
Design of Optimal Controller for Speed Control of DC Motor Using Constrained Particle Swarm Optimization
,” in
2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)
, (
Tamil Nadu, India
,
2016
).
11.
P.
Wang
, and
D. P.
Kwok
,
Optimal design of PID process controllers based on genetic algorithms
,
Control Engineering Practice
,
2
,
641
648
(
1994
).
12.
C.
Tan
and
Z. S.
Liang
,
Modeling and simulation analysis of fractional order Boost converter in pseudo-continuous conduction mode
,
Acta Phys. Sin.
,
63
, (
2014
).
13.
M.
Cech
and
M.
Schlegel
, “The fractional-order PID controller outperforms the classical one,” in
Process control
2006
, (
Pardubice Technical University
,
Czech Republic
,
2006
), pp.
1
6
.
14.
R.
El-Khazali
, “
Discretization of Fractional-Order Differentiators and Integrators
,” in
19th IFAC Congress
, (
Cape Town, South Africa
,
2014
), pp.
2016
2021
.
15.
K.
Ogata
,
Modern Control Engineering
(
Prentice Hall
,
New Jersey
,
2010
).
16.
I.
Podlubny
,
Fractional-Order Systems and PIλDδ Controllers
,
IEEE Transactions on Automatic Control
44
,
208
213
(
1999
).
17.
B. M.
Vinagre
,
I.
Podlubny
,
A.
Hernandez
and
V.
Feliu
,
Some Approximations of Fractional Order Operators used in Control Theory and Applications
,
Fractional calculus and applied analysis
3
,
231
248
(
2000
).
18.
Y.
Luo
and
Y. Q.
Chen
, “
Fractional-order [proportional derivative] controller for robust motion control: Tuning procedure and validation
,” in
American Control Conference
, (
Missouri, USA
,
2009
), pp.
1412
1417
.
19.
R.
El-Khazali
,
On the biquadratic approximation of fractional-order Laplacian operators
,
Analog Int. Circuits and Sig. Proc.
82
,
503
517
, (
2015
).
20.
I.
Petras
,
Fractional order nonlinear systems-modeling: analysis and simulation
(
Springer publication
,
New York
,
2011
).
21.
A.
Tepljakov
, “
Fractional-order Calculus based Identification and Control of Linear Dynamic Systems
,” Master thesis,
Tallinn University of Technology
,
Tallinn, Estonia
,
2011
.
22.
S.
Das
and
I.
Pan
,
tFractional Order Signal Processing: Introductory Concepts and Applications
(
Springer Briefs in Applied Sciences and Technology
,
Berlin
,
2012
).
23.
A.
Tepljakov
, “
Fractional-order Modeling and Control of Dynamic Systems
,” Ph.D thesis,
Tallin University of Technology
,
Tallinn, Estonia
,
2015
.
24.
C. A.
Monje
,
Y. Q.
Chen
,
B. M.
Vinagre
,
D.
Xue
, and
V.
Feliu
,
Fractional-Order Systems and Controls: Fundamentals and Applications
(
Springer
,
London, New York
,
2010
).
25.
A. K.
Gil’mutdinov
,
P. A.
Ushakov
and
R.
El-Khazali
,
Fractal Elements and their Applications
(
Springer
,
Switzerland
,
2017
).
26.
S. W.
Khubalkar
,
A. S.
Chopade
,
A. S.
Junghare
and
M. V.
Aware
, “
Design and Tuning of Fractional Order PID Controller for Speed control of Permanent Magnet Brushless DC Motor
,” in
2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI)
, (
Kolkata, India
,
2016
).
27.
N. R.
Raju
and
P. L.
Reddy
,
Robustness Study of Fractional Order PID Controller Optimized by Particle Swarm Optimization in AVR System
,
International Journal of Electrical and Computer Engineering
6
,
2033
2040
(
2016
).
28.
H.
Ramezanian
and
S.
Balochian
,
Optimal Design a Fractional-Order PID Controller using Particle Swarm Optimization Algorithm
,
International Journal of Control and Automation
6
,
55
67
(
2013
).
29.
M. S.
Kumar
and
S. K. V.
Smitha
,
Design of Tuning Methods for Fractional order PIλDδ Controller using PSO Algorithm
,
International Journal for Research in Applied Science & Engineering Technology
2
, pp.
438
442
(
2014
).
This content is only available via PDF.