We study the parabolic equations with a changing time direction using the theory of singular integral equations with the Cauchy kernel, as well as behavior of the Cauchy type integral at the ends of the integration contour and at the density discontinuity points in Hölder spaces Hxtp,p/2n. Along with the smoothness of the problems data, the theory of singular equations makes it possible to find additional necessary and sufficient conditions ensuring that the solution belongs to the Hölder spaces with p > 2n. Moreover, a unified approach applied under general matching conditions for such equations shows that noninteger values of p – [p] in can have a large effect on both the number of solvability conditions and the smoothness of the desired solution to the equation.

1.
F. D.
Gahov
,
Bound. Val. Prob.
(
Nauka
,
Moscow
,
1977
).
2.
N. I.
Mushelishvili
,
Sing. Integr. Equat.
(
Nauka
,
Moscow
,
1968
).
3.
S. A.
Tersenov
,
Parabolic Equat. with Changing Time Diraction
(
Nauka
,
Novosibirsk
,
1985
).
4.
I. E.
Egorov
,
S. G.
Pyatkov
and
S. V.
Popov
,
Nonclassical Differential-Operator Equations
(
Nauka
,
Novosibirsk
,
2000
).
5.
V. N.
Monakhov
Bound. Val. Prob. Free Bound. Elliptic Syst. Equat.
(
Nauka
,
Novosibirsk
,
1977
).
6.
N. P.
Vekua
Sistem Sing. Integr. Equat.
(
Nauka
,
Moscow
,
1968
).
7.
R. V.
Duduchava
,
Dokl. Akad. Nauk SSSR
191
(
1
),
16
19
(
1970
).
8.
A. P.
Soldatov
One-Dimensional Sing. Oper. and Bound. Val. Prob. of the Theory of Funct.
(
Vysshaya Shkola, Moscow
,
1991
).
9.
S. V.
Popov
,
Sib. Math. J. Dep. VINITI No. 8646-B88
(07 December
1988
).
10.
S. V.
Popov
and
S. V.
Potapova
,
Reports Acad. Scien.
424
(
5
),
594
596
, (
2009
).
11.
S. V.
Popov
,
Reports Acad. Scien.
400
(
1
),
29
31
(
2005
).
12.
S. V.
Popov
,
Math. Zametki SVFU.
21
(
2
),
81
93
, (
2014
).
13.
L.
Cattabriga
,
Rend. Sem. Mat. Univ. Padova.
28
(
2
),
376
401
, (
1958
).
14.
L.
Cattabriga
,
Rend. sem. fac. sc. Univ. Cagliari. I
31
(
1-2
),
48
79
, (
1961
)
L.
Cattabriga
,
Rend. sem. fac. sc. Univ. Cagliari. II
32
(
3-4
),
254
267
, (
1962
).
This content is only available via PDF.